Influence of notch hole wall defects on the crack propagation under notch blasting
-
摘要: 利用有机玻璃(PMMA)材料在切槽炮孔壁上预制缺陷裂纹,以TATP炸药为装药,采用动态焦散线实验结合数值模拟的方法,探究了炮孔壁缺陷对切槽爆破裂纹扩展的影响。结果表明:在平行缺陷处应力波的反射会导致切槽裂纹起裂方向向下偏移,在垂直缺陷处应力波的折射不影响裂纹起裂方向;孔壁缺陷的存在会抑制应力波及爆生气体对切槽处裂纹的作用,使其裂纹长度、扩展速度及强度因子均减小;抑制作用与缺陷到炮孔中心的距离有关,当缺陷远离炮孔中心时,平行缺陷对两侧切槽裂纹的抑制作用逐渐减弱,垂直缺陷对远侧切槽裂纹的抑制作用逐渐减弱,对近侧切槽裂纹的抑制作用逐渐增强;垂直缺陷左右的切槽裂纹受边界反射应力波作用相较于平行缺陷更加显著,左侧裂纹由于前期受缺陷处的反射应力波作用,并不呈现明显规律,但右侧裂纹随垂直缺陷远离炮孔中心,受边界反射应力波的作用显著降低。Abstract: The defective cracks were prefabricated on the wall of the notch holes by using PMMA material, which were parallel or vertical to the notch, and the distance from the defective cracks to the holes center was 2, 3, and 4 mm. The influence of notch hole wall defects on the crack propagation of notch blasting was investigated by using a digital dynamic caustic experimental system with numerical simulation. At the same time, TATP explosives were employed as a charge, which served to mitigate the effect of gun smoke on the dynamic caustic experimental system and to improve the experimental design. The results demonstrate that the reflection of the stress wave at parallel defects results in a downward shift in the direction of crack initiation at the notch, but the refraction of the stress wave at vertical defects has no effect on the direction of crack initiation. The presence of wall defects in the hole impedes the impact of stress waves and blast gases on the cracks at the notch, resulting in a reduction in the length, expansion rate, and strength factor values of the cracks, and the degree of inhibition is contingent upon the distance of the defects from the centre of the borehole. As the distance between the parallel defects and the centre of the borehole increases, the inhibition effect of the parallel defects on both sides of the notch cracks gradually decreases. the inhibition effect of vertical defects on the far side of the notch cracks gradually decreases, while the inhibition effect on the proximal side of the notch cracks gradually enhances. The left and right notch cracks of vertical defects are more significantly affected by the boundary reflected stress wave than those of parallel defects. The notch cracks on the left side do not exhibit a clear pattern, owing to the pre-existing reflected stress wave at the defects. In contrast, the notch cracks on the right side are substantially diminished by the boundary-reflected stress wave as the vertical defects move away from the center of the notch holes.
-
Key words:
- hole wall defect /
- notch blasting /
- dynamic caustic line /
- stress wave /
- crack propagation
-
表 1 实验方案
Table 1. Experimental scheme
试件 缺陷类型 到圆心的距离/mm 炮孔直径/mm 药卷直径/mm 不耦合系数 装药量/mg M 8 5 1.6 50 P-2 平行 2 8 5 1.6 50 P-3 平行 3 8 5 1.6 50 P-4 平行 4 8 5 1.6 50 V-2 垂直 2 8 5 1.6 50 V-3 垂直 3 8 5 1.6 50 V-4 垂直 4 8 5 1.6 50 表 2 应力波及切槽裂纹偏转角
Table 2. Stress spread and notch crack deflection angle
试件 α/(°) $ \bar{\alpha} $/(°) β/(°) $ \bar{\beta} $/(°) 20.3 22.5 P-2 19.6 20.1 21.8 22.1 20.5 22.0 28.8 29.7 P-3 29.4 29.3 30.5 30.2 29.7 30.4 35.3 34.9 P-4 36.4 36.1 35.5 35.4 36.6 35.8 表 3 切槽裂纹长度
Table 3. Notch crack length
试件 L/mm ΔL/LM/% M 95.3 P-2 41.7 −56.24 P-3 57.3 −39.87 P-4 61.6 −35.36 V-2-L 84.3 −11.54 V-3-L 81.5 −14.48 V-4-L 75.3 −20.98 V-2-R 46.6 −51.10 V-3-R 35.2 −63.06 V-4-R 31.2 −67.26 表 4 最大扩展速度分析
Table 4. Maximum expansion speed analysis
试件 v/(m·s−1) Δv/vM/% M 628.57 P-2 307.13 −51.14 P-3 385.68 −38.64 P-4 446.30 −28.99 V-2-L 590.48 −6.06 V-3-L 692.72 10.21 V-4-L 663.78 5.60 V-2-R 400.45 −36.29 V-3-R 351.22 −44.12 V-4-R 248.35 −60.49 表 5 最大强度因子分析
Table 5. Maximum intensity factor analysis
试件 K/(MN·m-3/2) ΔK/KM/% M 4.89 P-2 2.77 -43.35 P-3 2.59 -47.03 P-4 2.85 -41.72 V-2-L 3.96 -19.02 V-3-L 3.48 -28.83 V-4-L 3.11 -36.40 V-2-R 2.77 -43.35 V-3-R 2.59 -47.03 V-4-R 2.28 -53.37 表 6 炸药材料参数
Table 6. Explosive material parameters
ρ/(g·cm−3) D/(m·s−1) p/GPa A/GPa B/GPa R1 R2 ω E0/(J·kg−1) 1.63 6.93×103 21 373.7 3.75 4.15 0.9 0.35 3.68×106 表 7 岩石材料参数
Table 7. Rock material parameters
密度/(g·cm−3) 剪切模量/GPa 抗拉强度/MPa 抗压强度/MPa 2.66 28.7 12.2 154 表 8 空气介质参数
Table 8. Air medium parameters
密度/(g·cm−3) C0 C1 C2 C3 C4 C5 C6 E0/(J·kg−1) V0 1.25×10−3 0 0 0 0 0.4 0.4 0 2.4×10−6 1 -
[1] 刘承伟. 缝槽水压爆破高效定向破岩机理 [D]. 重庆: 重庆大学, 2019: 1-6. DOI: 10.27670/d.cnki.gcqdu.2019.000861.LIU C W. Mechanism study on efficient and directional rock fracturing by slotting hydraulic blasting [D]. Chongqing: Chongqing University, 2019: 1-6. DOI: 10.27670/d.cnki.gcqdu.2019.000861. [2] DALLY J W. An introduction to dynamic photoelasticity [J]. Experimental Mechanics, 1980, 20(12): 409–416. DOI: 10.1007/BF02320881. [3] ROSSMANITH H P, SHUKLA A. Dynamic photoelastic investigation of interaction of stress waves with running cracks [J]. Experimental Mechanics, 1981, 21(11): 415–422. DOI: 10.1007/BF02327143. [4] LUO H H, YANG R S, LI C X, et al. Research on the dynamic propagation characteristics of cracks in special-shaped charges [J]. Journal of Testing and Evaluation, 2022, 50(4): 2227–2239. DOI: 10.1520/JTE20210728. [5] SU D, KANG Y, YAN F, et al. Crack propagation law affected by natural fracture and water jet slot under blast loading [J]. Combustion, Explosion, and Shock Waves, 2018, 54(6): 747–756. DOI: 10.1134/S0010508218060151. [6] SU D F, JIA Z Z, ZHU Q, et al. Study on the Combined effect of inclined natural fracture and water jet slot on the blast-induced crack propagation law [J]. Shock and Vibration, 2022, 2022: 4916990. DOI: 10.1155/2022/4916990. [7] 王雁冰, 杨仁树, 丁晨曦, 等. 双孔爆炸应力波作用下缺陷介质裂纹扩展的动焦散试验 [J]. 煤炭学报, 2016, 41(7): 1755–1761. DOI: 10.13225/j.cnki.jccs.2015.0370.WANG Y B, YANG R S, DING C X, et al. Dynamic caustics experiment on crack propagation of defective medium under the effect of explosive stress waves of double holes [J]. Journal of China Coal Society, 2016, 41(7): 1755–1761. DOI: 10.13225/j.cnki.jccs.2015.0370. [8] 岳中文, 郭洋, 许鹏, 等. 定向断裂控制爆破爆生裂纹扩展机理的实验研究 [J]. 工程力学, 2016, 33(2): 50–58. DOI: 10.6052/j.issn.1000-4750.2014.09.0816.YUE Z W, GUO Y, XU P, et al. Experimental study on the mechanism of blast-induced crack propagation under directional fracture controlled blasting [J]. Engineering Mechanics, 2016, 33(2): 50–58. DOI: 10.6052/j.issn.1000-4750.2014.09.0816. [9] 杨仁树, 左进京, 方士正, 等. 圆孔缺陷对爆生裂纹扩展行为影响的试验研究 [J]. 振动与冲击, 2018, 37(12): 174–178. DOI: 10.13465/j.cnki.jvs.2018.12.026.YANG R S, ZUO J J, FANG S Z, et al. An experimental study on the effect of circular hole defect on crack propagation behavior of blast loading [J]. Journal of Vibration and Shock, 2018, 37(12): 174–178. DOI: 10.13465/j.cnki.jvs.2018.12.026. [10] WANG Y. Experimental research on the influence of an empty-hole defect on crack connections between a directionally fractured blast hole [J]. Journal of Testing and Evaluation, 2017, 45(6): 2139–2150. DOI: 10.1520/JTE20160048. [11] 岳中文, 郭洋, 王煦, 等. 空孔形状对岩石定向断裂爆破影响规律的研究 [J]. 岩土力学, 2016, 37(2): 376–382. DOI: 10.16285/j.rsm.2016.02.009.YUE Z W, GUO Y, WANG X, et al. Influence of empty hole shape on directional fracture controlled blasting of rock [J]. Rock and Soil Mechanics, 2016, 37(2): 376–382. DOI: 10.16285/j.rsm.2016.02.009. [12] 杨仁树, 丁晨曦, 杨立云, 等. 含缺陷PMMA介质的定向断裂控制爆破试验研究 [J]. 岩石力学与工程学报, 2017, 36(3): 690–696. DOI: 10.13722/j.cnki.jrme.2016.0334.YANG R S, DING C X, YANG L Y, et al. Experimental study on controlled directional fracture blasting on PMMA mediums with flaws [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 690–696. DOI: 10.13722/j.cnki.jrme.2016.0334. [13] PYRAK-NOLTE L J. The seismic response of fractures and the interrelations among fracture properties [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(8): 787–802. DOI: 10.1016/S0148-9062(96)00022-8. [14] KING M S, MYER L R, REZOWALLI J J. Experimental studies of elastic-wave propagation in a columnar-jointed rock mass [J]. Geophysical Prospecting, 1986, 34(8): 1185–1199. DOI: 10.1111/j.1365-2478.1986.tb00522.x. [15] PYRAK-NOLTE L J, MYER L R, COOK N G W. Transmission of seismic waves across single natural fractures [J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6): 8617–8638. DOI: 10.1029/JB095iB06p08617. [16] FAN L F, MA G W, LI J C. Nonlinear viscoelastic medium equivalence for stress wave propagation in a jointed rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 11–18. DOI: 10.1016/j.ijrmms.2011.12.008. [17] 沈世伟, 廖文旺, 徐燕, 等. 不同节理间距条件下岩体双孔爆破动焦散试验研究 [J]. 煤炭学报, 2018, 43(8): 2180–2186. DOI: 10.13225/j.cnki.jccs.2017.1223.SHEN S W, LIAO W W, XU Y, et al. Dynamic caustics test of rock mass under different joint spacing conditions with two-hole blasting [J]. Journal of China Coal Society, 2018, 43(8): 2180–2186. DOI: 10.13225/j.cnki.jccs.2017.1223. [18] 沈世伟, 李国良, 李冬, 等. 不同角度预制裂隙条件下双孔爆破裂纹扩展规律 [J]. 煤炭学报, 2019, 44(10): 3049–3057. DOI: 10.13225/j.cnki.jccs.2018.1362.SHEN S W, LI G L, LI D, et al. Crack propagation law of two-hole blasting under different angles of prefabricated fissure [J]. Journal of China Coal Society, 2019, 44(10): 3049–3057. DOI: 10.13225/j.cnki.jccs.2018.1362. [19] 岳中文, 胡庆文, 陈彪. 爆生裂纹与层理缺陷相互作用的实验研究 [J]. 振动与冲击, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.YUE Z W, HU Q W, CHEN B. An experimental study of the interaction between the blast-induced crack and the bedding defect [J]. Journal of Vibration and Shock, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017. [20] 杨仁树, 肖成龙, 丁晨曦, 等. 空孔与运动裂纹相互作用的动焦散线实验研究 [J]. 爆炸与冲击, 2020, 40(5): 052202. DOI: 10.11883/bzycj-2019-0091.YANG R S, XIAO C L, DING C X, et al. Experimental study on dynamic caustics of interaction between void and running crack [J]. Explosion and Shock Waves, 2020, 40(5): 052202. DOI: 10.11883/bzycj-2019-0091. [21] 李松林. TATP的爆炸场参数与JWL状态方程研究 [D]. 淮南: 安徽理工大学, 2022: 1–4. DOI: 10.26918/d.cnki.ghngc.2022.000327.LI S L. Study on explosion field and JWL EOS of TATP [D]. Huainan: Anhui University of Science and Technology, 2022: 1–4. DOI: 10.26918/d.cnki.ghngc.2022.000327. [22] 杨仁树, 许鹏, 杨立云, 等. 缺陷介质切槽爆破断裂行为的动焦散线实验 [J]. 爆炸与冲击, 2016, 36(2): 145–152. DOI: 10.11883/1001-1455(2016)02-0145-08.YANG R S, XU P, YANG L Y, et al. Dynamic caustic experiment on fracture behaviors of flawed material induced by pre-notched blasting [J]. Explosion and Shock Waves, 2016, 36(2): 145–152. DOI: 10.11883/1001-1455(2016)02-0145-08. [23] KUTTER H K, FAIRHURST C. On the fracture process in blasting [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 181–202. DOI: 10.1016/0148-9062(71)90018-0. [24] 方秦, 孔祥振, 吴昊, 等. 岩石Holmquist-Johnson-Cook模型参数的确定方法 [J]. 工程力学, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780.FANG Q, KONG X Z, WU H, et al. Determination of Holmquist-Johnson-Cook consitiutive model parameters of rock [J]. Engineering Mechanics, 2014, 31(3): 197–204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780. [25] 邱鹏. 爆炸应力波与裂纹相互作用机理研究 [D]. 北京: 中国矿业大学(北京), 2019: 55−65. DOI: 10.27624/d.cnki.gzkbu.2019.000136.QIU P. Mechanisms of the interaction between blast stress waves and cracks [D]. Beijing: China University of Mining and Technology (Beijing), 2019: 55−65. DOI: 10.27624/d.cnki.gzkbu.2019.000136. -