Study on the effect of Zr-based reactive casing on explosion enhancement and fuel ignition
-
摘要: 为探究Zr基活性壳体的爆炸释能及对油盒的毁伤效果,采用合金熔炼浇铸方式制备了Zr基活性材料壳体,通过爆炸驱动试验,并结合高速摄影记录结果,对比等质量45钢壳体,对爆炸火球参数、冲击波波速进行了观测,研究了不同材料壳体产生的破片对油盒的冲击效应。结果表明:与等质量钢壳体相比,爆炸驱动下Zr基活性材料壳体火光持续时间更长、冲击波波速更快,Zr基活性材料壳体在爆炸驱动下对空气冲击波具有强化作用;活性材料击穿油盒后引燃盒内燃油,具备引燃燃油能力,而等质量钢壳体未引燃盒内燃油。Abstract: To investigate the explosive energy release of Zr-based reactive material (Zr-RM) casings and the ignition effect of fragments driven by the explosion on fuel, casings composed primarily of zirconium (Zr), copper (Cu), nickel (Ni), aluminum (Al), and ytterbium (Y) were fabricated using alloy melting and casting techniques. The casings mentioned above had an outer diameter of 40 mm, a height of 80 mm, and a wall thickness of 5 mm. For comparison of subsequent damage effects, steel casings made of 45 steel with the same dimensions and mass were also prepared. Both types of casings were filled with JH-2 explosive charges. The charged structures were placed on a polyvinyl chloride pipe stand 1.5 m above the ground, and a fuel box containing 2.5 L of gasoline was positioned 2.0 m away from the explosion center. During the explosion-driven tests, a high-speed camera was utilized to capture the formation and propagation of the explosion fireball, the shockwave, and the impact process of casing fragments on the fuel tank. The fireball duration, shockwave velocity, and fragment impact effects were measured and analyzed. Additionally, the ignition and destruction effects of the fragments on the fuel were observed and recorded. The experimental results demonstrate that, when compared to steel casings of equal mass, Zr-RM casings under explosion-driven conditions exhibit a longer duration of firelight and faster shockwave velocities. Specifically, the fireball duration of Zr-RM casings is approximately 25.80 times that of steel casings, and the shockwave velocity is roughly 1.17 times faster. Zr-RM casings exhibit an enhancement effect on air shockwaves under explosion-driven conditions. Fragments of different materials cause structural damage to fuel tanks, including perforation and plastic deformation. After piercing the fuel tank, the reactive material ignites the fuel inside, demonstrating the ability to ignite gasoline. On the contrary, steel casings of equal mass do not ignite the fuel within the tank. This research provides a reference for the application of Zr-RM casing warheads.
-
表 1 战斗部结构参数
Table 1. Warhead structural parameters
壳体材料 壳体密度/(g·cm−3) 壳体质量/g 壳体壁厚/mm 装药质量/g 装药高度/mm 45钢 7.8 330 4.82 106 80 Zr基活性材料 6.8 330 5.00 106 80 表 2 爆炸驱动不同材料壳体形成空气冲击波与爆心距离及波速参数
Table 2. Shock wave distance and velocity of different material casings driven by explosions
时间/ms 活性壳体 钢壳体 爆心距/mm 波速/(m·s−1) 爆心距/mm 波速/(m·s−1) 0.50 781.74 617.11 0.60 860.52 787.8 685.68 685.7 0.70 939.30 787.8 748.53 628.5 0.80 1 014.04 747.4 811.39 628.6 0.90 1 088.28 742.4 872.81 614.2 1.00 1 157.46 691.8 932.36 595.5 1.10 1 224.02 665.6 989.57 572.1 1.20 1 288.95 649.3 1 045.08 555.1 1.30 1 352.58 636.3 1 100.07 549.9 1.40 1 415.87 632.9 1 154.67 546.0 1.50 1 478.90 630.3 1 208.39 537.2 -
[1] 罗文敏, 齐圣辉, 彭安, 等. 小口径防空高炮弹药发展趋势分析 [J]. 现代防御技术, 2023, 51(5): 31–38. DOI: 10.3969/j.issn.1009-086x.2023.05.005.LUO W M, QI S H, PENG A, et al. Development trend analysis of small caliber anti-aircraft gun ammunition [J]. Modern Defense Technology, 2023, 51(5): 31–38. DOI: 10.3969/j.issn.1009-086x.2023.05.005. [2] 杜宁, 张先锋, 熊玮, 等. 爆炸驱动典型活性材料能量释放特性研究 [J]. 爆炸与冲击, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.DU N, ZHANG X F, XIONG W, et al. Energy-release characteristics of typical reactive materials under explosive loading [J]. Explosion and Shock Waves, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239. [3] DU N, XIONG W, WANG T, et al. Study on energy release characteristics of reactive material casings under explosive loading [J]. Defence Technology, 2021, 17(5): 1791–1803. DOI: 10.1016/j.dt.2020.11.008. [4] FROST D L, GOROSHIN S, JANIDLO S, et al. Fragmentation of reactive metallic particles during impact with a plate [J]. AIP Conference Proceedings, 2004, 706(1): 451–454. DOI: 10.1063/1.1780275. [5] 郑腾, 梁晓璐, 郑佳辰, 等. 爆炸作用下Al/Mg/CuO活性壳体的释能特性 [J]. 含能材料, 2021, 29(5): 422–427. DOI: 10.11943/CJEM2020147.ZHENG T, LIANG X L, ZHENG J C, et al. Energy release characteristics of Al/Mg/CuO reactive shells under explosion loads [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 422–427. DOI: 10.11943/CJEM2020147. [6] 李凌峰, 王辉, 韩秀凤, 等. Al/PTFE活性材料在炸药爆轰作用下的响应特性研究 [J]. 兵器装备工程学报, 2023, 44(2): 174–179. DOI: 10.11809/bqzbgcxb2023.02.027.LI L F, WANG H, HAN X F, et al. Research on the response characteristics of Al/PTFE active materials under explosive detonation [J]. Journal of Ordnance Equipment Engineering, 2023, 44(2): 174–179. DOI: 10.11809/bqzbgcxb2023.02.027. [7] 焦晓龙, 徐豫新, 吴宗娅, 等. 活性壳体温压战斗部对相控阵雷达天线的毁伤效应 [J]. 兵工学报, 2024, 45(6): 1725–1734. DOI: 10.12382/bgxb.2023.0895.JIAO X L, XU Y X, WU Z Y, et al. Damage effect of thermobaric warhead with reactive casing on phased-array radar antenna [J]. Acta Armamentarii, 2024, 45(6): 1725–1734. DOI: 10.12382/bgxb.2023.0895. [8] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004. [9] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302. [10] HUANG C M, LI S, BAI S X. Quasi-static and impact-initiated response of Zr55Ni5Al10Cu30 alloy [J]. Journal of Non-Crystalline Solids, 2018, 48: 59–64. DOI: 10.1016/j.jnoncrysol.2017.10.011. [11] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107. [12] 张云峰, 方龙, 魏欣, 等. Zr基非晶合金破片冲击破碎反应机制研究 [J]. 爆炸与冲击, 2023, 43(1): 013103. DOI: 10.11883/bzycj-2022-0187.ZHANG Y F, FANG L, WEI X, et al. Research on mechanism of shock fragmentation reaction of Zr-based bulk metallic glass fragment [J]. Explosion and Shock Waves, 2023, 43(1): 013103. DOI: 10.11883/bzycj-2022-0187. [13] 王海福, 向镜安. 活性毁伤材料及其应用技术研究进展 [J]. 中国科学: 技术科学, 2023, 53(9): 1434–1448. DOI: 10.1360/SST-2023-0063.WANG H F, XIANG J A. Progress in reactive materials and their applications [J]. SCIENTIA SINICA Technologica, 2023, 53(9): 1434–1448. DOI: 10.1360/SST-2023-0063. [14] 王海福, 郑元枫, 余庆波, 等. 活性破片引燃航空煤油实验研究 [J]. 兵工学报, 2012, 33(9): 1148–1152.WANG H F, ZHENG Y F, YU Q B, et al. Experimental research on igniting the aviation kerosene by reactive fragment [J]. Acta Armamentarii, 2012, 33(9): 1148–1152. [15] 许化珍, 李向东. 含能破片对柴油箱的引燃破坏效应 [J]. 弹箭与制导学报, 2012, 32(2): 85–88. DOI: 10.3969/j.issn.1673-9728.2012.02.023.XU H Z, LI X D. The igniting damage effect of energetic fragments on diesel oil box [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2): 85–88. DOI: 10.3969/j.issn.1673-9728.2012.02.023. [16] 肖艳文, 徐峰悦, 郑元枫, 等. 活性材料弹丸碰撞油箱引燃效应实验研究 [J]. 北京理工大学学报, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002.XIAO Y W, XU F Y, ZHENG Y F, et al. Experimental study on ignition effects of fuel-filled tank impacted by reactive material projectile [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002. [17] WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact [J]. Defence Technology, 2021, 17(2): 599–608. DOI: 10.1016/j.dt.2020.03.017. [18] 谢剑文, 李沛豫, 王海福, 等. 活性破片撞击油箱毁伤行为与机理 [J]. 兵工学报, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384.XIE J W, LI P Y, WANG H F, et al. Damage behaviors and mechanisms of reactive fragments impacting fuel tanks [J]. Acta Armamentarii, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384. -