• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

铝球微气囊超结构Whipple屏抗超高速冲击性能物质点法分析

毛志超 于成 李晓杰 王小红 闫鸿浩 王宇新

毛志超, 于成, 李晓杰, 王小红, 闫鸿浩, 王宇新. 铝球微气囊超结构Whipple屏抗超高速冲击性能物质点法分析[J]. 爆炸与冲击, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265
引用本文: 毛志超, 于成, 李晓杰, 王小红, 闫鸿浩, 王宇新. 铝球微气囊超结构Whipple屏抗超高速冲击性能物质点法分析[J]. 爆炸与冲击, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265
MAO Zhichao, YU Cheng, LI Xiaojie, WANG Xiaohong, YAN Honghao, WANG Yuxin. A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method[J]. Explosion And Shock Waves, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265
Citation: MAO Zhichao, YU Cheng, LI Xiaojie, WANG Xiaohong, YAN Honghao, WANG Yuxin. A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method[J]. Explosion And Shock Waves, 2025, 45(7): 071424. doi: 10.11883/bzycj-2024-0265

铝球微气囊超结构Whipple屏抗超高速冲击性能物质点法分析

doi: 10.11883/bzycj-2024-0265
详细信息
    作者简介:

    毛志超(2000- ),男,硕士研究生,mzc@mail.dlut.edu.cn

    通讯作者:

    王宇新(1972- ),男,博士,副教授,wyxphd@dlut.edu.cn

  • 中图分类号: O389; V414.8

A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method

  • 摘要: 为了提升Whipple屏对太空碎片的超高速冲击防护性能,在不增加多孔材料、碳纤维等其他吸能材料的前提下,设计了一种铝球微气囊阵列超结构,并应用3D打印技术进行加工制备。同时,构建了初速度为7.5 km/s的球形弹丸冲击靶板的计算模型,用以研究超高速冲击防护性能;将物质点法的计算精度与实验进行对比验证后,开展了超高速冲击Whipple屏三维数值模拟;通过与单层铝板的超高速冲击模拟得到的靶板穿孔尺寸、碎片云形貌及其速度、动量、能量和温度等参数比较分析,讨论并揭示了铝球微气囊超结构的能量吸收与耗散机理。结果表明:铝球微气囊超结构Whipple屏对弹丸轴向动能的削减值比单层铝板提高了300 J,其碎片云径向最大膨胀半径比单层铝板增大了32.2 mm。由此可知,铝球微气囊超结构Whipple屏可以显著提高对空间碎片超高速冲击的防护性能。同时,与相关实验数据对比结果表明,物质点法超高速冲击数值模拟具有较高的计算精度,可以作为研究开发新型Whipple屏的数值实验工具。
  • 图  1  Whipple屏结构示意图

    Figure  1.  Schematic diagram of the Whipple shield

    图  2  铝球微气囊超结构Whipple屏示意图

    Figure  2.  Schematic diagram of aluminum spherical micro-airbag metastructure Whipple shield

    图  3  三维模型结构

    Figure  3.  Three-dimensional modeling structure

    图  4  3D打印实物照片

    Figure  4.  Picture of 3D printed physical model

    图  5  单层铝板Whipple屏超高速冲击模型

    Figure  5.  Single-layer aluminum plate Whipple shield hypervelocity impact model

    图  6  2种不同速度弹丸高速冲击铝板模拟

    Figure  6.  Simulation of high-speed impact of projectiles with two different velocities on aluminum plates

    图  7  实验与数值模拟的对比

    Figure  7.  Comparison of experimental and simulation results

    图  8  铝球微气囊超结构Whipple防护屏屏超高速冲击模型

    Figure  8.  Hypervelocity impact model of the Whipple shield with aluminum spherical micro-airbag metastructure

    图  9  铝球微气囊超结构Whipple屏碎片云形貌

    Figure  9.  Morphology of the debris cloud for the Whipple shield with aluminum spherical micro-airbag metastructure

    图  10  铝球微气囊超结构Whipple屏碎片云等效塑性应变

    Figure  10.  Effective plastic strain of debris cloud for the Whipple shield with aluminum spherical micro-airbag metastructure

    图  11  单层铝板Whipple屏超高速冲击模型

    Figure  11.  Hypervelocity impact model for single-layer aluminum plate Whipple shield

    图  12  碎片云形貌

    Figure  12.  Morphology of debris cloud

    图  13  碎片云的结构示意图

    Figure  13.  Schematic diagram of debris cloud structure

    图  14  t=20.0 μs碎片云形貌的对比

    Figure  14.  Comparison of debris cloud morphology at t=20.0 μs

    图  15  Whipple屏面板穿孔形貌

    Figure  15.  Perforation morphology for faceplate of the Whipple shield

    图  16  2种Whipple屏的弹丸轴向平均速度

    Figure  16.  Axial average residual velocity of the projectiles for the two Whipple shields

    图  17  单层铝板Whipple屏各组件的动能

    Figure  17.  Kinetic energy for each component of the Whipple shield with single-layer aluminum plate

    图  18  铝球微气囊超结构Whipple屏各组件的动能

    Figure  18.  Kinetic energy for each component of the Whipple shield with aluminum spherical micro-airbag metastructure

    图  19  弹丸在x方向的动能

    Figure  19.  Kinetic energy of the projectile in x-direction

    图  20  弹丸在y方向的动能

    Figure  20.  Kinetic energy of the projectile in y-direction

    图  21  弹丸在z方向的动能

    Figure  21.  Kinetic energy of the projectile in z-direction

    图  22  Whipple屏冲击温度计算云图

    Figure  22.  Impact temperature contours of the two Whipple shields

    表  1  Al2017和2Al2的Steinberg-Guinan模型参数

    Table  1.   Steinberg-Guinan model parameters for Al2017 and 2Al2

    材料 $ E / \mathrm{G}\mathrm{P}\mathrm{a}$ $ \rho / (\mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3})$ $ \beta $ $ {Y}_{0} / \mathrm{M}\mathrm{P}\mathrm{a}$ $ {Y}_{\mathrm{m}\mathrm{a}\mathrm{x}}/ \mathrm{M}\mathrm{P}\mathrm{a} $ $ n $ $ {G}'_{p} $ $ {G}'_{T}/( \mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{K}}^{-1}) $ $ {Y}'_{p}$ $ {c}_{V} / (\mathrm{J}\cdot {\mathrm{k}\mathrm{g}}^{-1}\cdot {\mathrm{K}}^{-1}) $
    Al2017 71.8 2 790 300 270 506 0.150 1.740 −16.00 0.016 7 900
    2Al2 76.0 2 785 310 260 760 0.185 1.865 −17.62 0.017 0 863
    下载: 导出CSV

    表  2  Al2017和2Al2的Mie-Grüneisen状态方程参数

    Table  2.   Mie-Grüneisen equation of state parameters for Al2017 and 2Al2

    材料 $ {c}_{\mathrm{g}}/(\mathrm{m}\cdot{\mathrm{s}}^{-1}) $ S1 S2 S3 γ0
    Al2017 5 370 1.290 0 0 2.0
    2Al2 5 328 1.338 0 0 2.0
    下载: 导出CSV

    表  3  实验与物质点法模拟得到的铝板穿孔直径的对比

    Table  3.   Comparison between experimental and MPM simulation perforation diameters of the aluminum plate

    序号 弹丸直径/mm 弹丸速度/(km·s−1) 实验穿孔直径/mm 物质点法模拟穿孔直径/mm 相对误差/%
    1 3.96 4.81 7.36 7.20 2.2
    2 4.23 4.46 7.10 7.20 1.4
    3 4.89 4.03 7.82 7.80 0.2
    4 4.98 5.00 8.38 8.20 2.1
    5 5.56 4.10 8.68 9.20 6.0
    下载: 导出CSV

    表  4  Al6061-T6和A2024-T4的Steinberg-Guinan模型参数[41]

    Table  4.   Steinberg-Guinan constitutive model parameters for Al6061-T6 and A2024-T4[41]

    材料 $ E / \mathrm{G}\mathrm{P}\mathrm{a}$ $ \rho / (\mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3})$ $ \beta $ $ {Y}_{0}/ \mathrm{M}\mathrm{P}\mathrm{a} $ $ {Y}_{\rm{max}} /\mathrm{M}\mathrm{P}\mathrm{a}$ $ n $ $ {G}'_{p}$ $ {G}'_{T} / (\mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{K}}^{-1}) $ $ {Y}'_{p} $ $ {c}_{V}/ (\mathrm{J}\cdot {\mathrm{k}\mathrm{g}}^{-1}{\cdot \mathrm{K}}^{-1}) $
    Al6061-T6 73.4 2 703 125 290 680 0.100 1.800 –17.00 0.018 9 885
    Al2024-T4 76.0 2 785 310 260 760 0.185 1.865 −17.62 0.017 0 863
    下载: 导出CSV

    表  5  Al6061-T6和Al2024-T4材料Mie-Grüneisen状态方程参数[41]

    Table  5.   Mie-Grüneisen equation of state parameters for Al6061-T6 and Al2024-T4[41]

    材料 cg/(m·s−1) S1 S2 S3 γ0
    Al6061-T6 5 240 1.400 0 0 1.97
    Al2024-T4 5 328 1.338 0 0 2.00
    下载: 导出CSV

    表  6  主体碎片云膨胀尺寸

    Table  6.   Expansion size of the outer bubble debris clouds

    Whipple屏类型 Da/mm Db/mm Dc/mm
    单层铝板 96.0 67.2 65.8
    铝球微气囊超结构 77.2 99.4 85.8
    下载: 导出CSV

    表  7  2种Whipple屏穿孔尺寸

    Table  7.   Perforation sizes of the two Whipple shields

    类型a/mmb/mm
    铝球微气囊超结构Whipple屏面板28.429.2
    单层铝板Whipple屏面板45.644.4
    铝球微气囊超结构Whipple屏背板57.664.8
    单层铝板Whipple屏面背板46.046.0
    下载: 导出CSV
  • [1] ANZ-MEADOR P D. Orbital debris quarterly news [EB/OL]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/#.
    [2] SINGH P K, KUMAR M. Protection of Whipple shield against hypervelocity impact of space debris: a review [J]. Sādhanā, 2024, 49(2): 105. DOI: 10.1007/s12046-024-02467-2.
    [3] PAI A, DIVAKARAN R, ANAND S, et al. Advances in the Whipple shield design and development: a brief review [J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 20–38. DOI: 10.1007/s40870-021-00314-7.
    [4] CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
    [5] SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/3.10861.
    [6] TANG E L, ZHAO L L, HAN Y F, et al. Research on the electromagnetic propagating characteristics of hypervelocity impact on the target with aperture and different potential conditions [J]. Aerospace Science and Technology, 2020, 107: 106274. DOI: 10.1016/j.ast.2020.106274.
    [7] MEJÍA-KAISER M I. Space debris mitigation guidelines [Z]. Brill Nijhoff, 2020: 381–389. DOI: 10.116/9789004411029_014.
    [8] CHRISTIANSEN E L. Meteoroid/debris shielding: TP-2003-210788 [R]. Washington: National Aeronautics and Space Administration, 2003.
    [9] WEN X Z, HUANG J, KE F W, et al. Preliminary study on shielding performance of debris shield with the rear wall combining light materials and an aluminum plate [J]. International Journal of Impact Engineering, 2019, 124: 31–36. DOI: 10.1016/j.ijimpeng.2018.10.006.
    [10] HE Q G, CHEN X W. Simulation method of debris cloud from fiber-reinforced composite shield under hypervelocity impact [J]. Acta Astronautica, 2023, 204: 402–417. DOI: 10.1016/j.actaastro.2023.01.008.
    [11] WHIPPLE F L. Meteorites and space travel [J]. The Astronomical Journal, 1947, 52: 131. DOI: 10.1086/106009.
    [12] ZHANG X T, LIU T, LI X G, et al. Hypervelocity impact performance of aluminum egg-box panel enhanced Whipple shield [J]. Acta Astronautica, 2016, 119: 48–59. DOI: 10.1016/j.actaastro.2015.10.013.
    [13] WEN K, CHEN X W, LU Y G. Research and development on hypervelocity impact protection using Whipple shield: an overview [J]. Defence Technology, 2021, 17(6): 1864–1886. DOI: 10.1016/j.dt.2020.11.005.
    [14] SLIMANE S A, SLIMANE A, GUELAILIA A, et al. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding [J]. Mechanics of Advanced Materials and Structures, 2022, 29(25): 4487–4505. DOI: 10.1080/15376494.2021.1931991.
    [15] REN S Y, LONG R R, ZHANG Q M, et al. The hypervelocity impact resistance behaviors of NbC/Al2024 ceramic-metal composites [J]. International Journal of Impact Engineering, 2021, 148: 103759. DOI: 10.1016/j.ijimpeng.2020.103759.
    [16] RICHARDSON A J, SANDERS J P. Development of dual bumper wall construction for advanced spacecraft [J]. Journal of Spacecraft and Rockets, 1972, 9(6): 448–451. DOI: 10.2514/3.61709.
    [17] SENNETT R E, LATHROP B L. Effects of hypervelocity impact on honeycomb structures [J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1496–1497. DOI: 10.2514/3.29514.
    [18] WEN X Z, HUANG J, KE F W, et al. Debris dispersion effect in N-shape configuration [J]. Acta Astronautica, 2014, 104(1): 173–178. DOI: 10.1016/j.actaastro.2014.06.037.
    [19] KUMAR S K S, KIM Y, CHA J H, et al. Hybrid interspaced and free-boundary aramid fabric back bumper for hypervelocity impact shielding system [J]. International Journal of Impact Engineering, 2023, 171: 104377. DOI: 10.1016/j.ijimpeng.2022.104377.
    [20] KHODAEI M, FARAHANI S M, HAGHIGHI-YAZDI M. Numerical investigation of high velocity impact on foam-filled honeycomb structures including foam fracture model [J]. Mechanics of Advanced Materials and Structures, 2022, 29(5): 748–760. DOI: 10.1080/15376494.2020.1793239.
    [21] WARREN J, COLE M, OFFENBERGER S, et al. Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid [J]. International Journal of Impact Engineering, 2021, 150: 103803. DOI: 10.1016/j.ijimpeng.2020.103803.
    [22] MOONEN J, RYAN S, KORTMANN L, et al. Evaluating UHMWPE-stuffed aluminium foam sandwich panels for protecting spacecraft against micrometeoroid and orbital debris impact [J]. International Journal of Impact Engineering, 2023, 180: 104668. DOI: 10.1016/j.ijimpeng.2023.104668.
    [23] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 217–228. DOI: 10.1016/0734-743X(95)99848-L.
    [24] BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
    [25] KIM Y, CHOI C, KUMAR S K S, et al. Behavior of dragon skin flexible metal bumper under hypervelocity impact [J]. International Journal of Impact Engineering, 2019, 125: 13–26. DOI: 10.1016/j.ijimpeng.2018.10.005.
    [26] REN S Y, ZHANG Q M, GAO F, et al. Impact resistance mechanism of reactive material bumper for spacecraft Whipple shield: experiments and numerical simulations [J]. Aerospace Science and Technology, 2022, 126: 107646. DOI: 10.1016/j.ast.2022.107646.
    [27] SMIRNOV N N, KISELEV A B, SMIRNOVA M N, et al. Space traffic hazards from orbital debris mitigation strategies [J]. Acta Astronautica, 2015, 109: 144–152. DOI: 10.1016/j.actaastro.2014.09.014.
    [28] ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005.
    [29] ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [30] WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108(10): 101903. DOI: 10.1063/1.4943584.
    [31] REN S Y, ZHANG Q M, WU Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124–137. DOI: 10.1016/j.ijimpeng.2019.04.011.
    [32] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.

    SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
    [33] SMIRNOV N N, KISELEV A B, ZAKHAROV P P. Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement [J]. Acta Astronautica, 2020, 171: 215–224. DOI: 10.1016/j.actaastro.2020.03.010.
    [34] LU G X, YU T X. References [M]//LU G X, YU T X. Energy Absorption of Structures and Materials. Amsterdam: Elsevier, 2003: 385–400. DOI: 10.1533/9781855738584.references.
    [35] SHEN J H, LU G X, ZHAO L M, et al. Response of curved sandwich panels subjected to blast loading [J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 382–393. DOI: 10.1061/(ASCE)CF.1943-5509.0000234.
    [36] JING L, WANG Z H, ZHAO L M. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading numerical simulations [J]. Composite Structures, 2013, 99: 213–223. DOI: 10.1016/j.compstruct.2012.12.013.
    [37] GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541.
    [38] YORK II A R, SULSKY D, SCHREYER H L. Fluid-membrane interaction based on the material point method [J]. International Journal for Numerical Methods in Engineering, 2000, 48(6): 901–924. DOI: 10.1002/(SICI)1097-0207(20000630)48:63.0.CO;2-T.
    [39] 迟润强, 庞宝君, 何茂坚, 等. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.

    CHI R Q, PANG B J, HE M J, et al. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hyper-velocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.
    [40] 管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究 [J]. 高压物理学报, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.

    GUAN G S, ZHANG W, PANG B J, et al. A study of penetration hole diameter in thin al-plate by hypervelocity impact of al-spheres [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.
    [41] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
  • 加载中
图(22) / 表(7)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  35
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 修回日期:  2025-04-21
  • 网络出版日期:  2025-04-24
  • 刊出日期:  2025-07-05

目录

    /

    返回文章
    返回