A study on hypervelocity impact resistance of the Whipple shield with aluminum spherical micro-airbag metastructure using material point method
-
摘要: 为了提升Whipple屏对太空碎片的超高速冲击防护性能,在不增加多孔材料、碳纤维等其他吸能材料的前提下,设计了一种铝球微气囊阵列超结构,并应用3D打印技术进行加工制备。同时,构建了初速度为7.5 km/s的球形弹丸冲击靶板的计算模型,用以研究超高速冲击防护性能;将物质点法的计算精度与实验进行对比验证后,开展了超高速冲击Whipple屏三维数值模拟;通过与单层铝板的超高速冲击模拟得到的靶板穿孔尺寸、碎片云形貌及其速度、动量、能量和温度等参数比较分析,讨论并揭示了铝球微气囊超结构的能量吸收与耗散机理。结果表明:铝球微气囊超结构Whipple屏对弹丸轴向动能的削减值比单层铝板提高了300 J,其碎片云径向最大膨胀半径比单层铝板增大了32.2 mm。由此可知,铝球微气囊超结构Whipple屏可以显著提高对空间碎片超高速冲击的防护性能。同时,与相关实验数据对比结果表明,物质点法超高速冲击数值模拟具有较高的计算精度,可以作为研究开发新型Whipple屏的数值实验工具。
-
关键词:
- 物质点法 /
- 超高速冲击 /
- Whipple防护屏 /
- 超结构 /
- 空间碎片
Abstract: To enhance the hypervelocity impact protection performance of Whipple shields against high-speed space debris, an aluminum spherical micro-airbag array metastructure was designed without incorporating additional energy-absorbing materials such as porous materials or carbon fibers. This metastructure was fabricated using 3D printing technology. The protective performance of the Whipple shield was investigated and analyzed by constructing a numerical model of a spherical projectile with an initial velocity of 7.5 km/s impacting both the single-layer aluminum plate and the aluminum spherical micro-airbag metastructure. The finite element method is often inadequate for accurately calculating large plastic deformations and fracture damage problems, particularly when mesh distortions are involved. Therefore, the material point method (MPM) was employed in this study to simulate hypervelocity impact scenarios. After verifying the reliability of the MPM calculations through experiments, a three-dimensional numerical simulation of hypervelocity impacts on the Whipple shield was conducted. The mechanism of energy absorption and dissipation by the aluminum spherical micro-airbag metastructure was elucidated through a comparative analysis of the perforation size, debris cloud morphology, and key parameters such as velocity, momentum, energy, and temperature with those of a single-layer aluminum plate subjected to hypervelocity impact. The results indicate that the Whipple shield with the aluminum spherical micro-airbag metastructure reduces the axial kinetic energy of the projectile by 300 J more than the single-layer aluminum plate. In addition, the maximum expansion radius of the debris cloud is 32.2 mm larger than that of the single-layer aluminum plate. These findings demonstrate that the Whipple shield with the aluminum spherical micro-airbag metastructure significantly enhances protection against hypervelocity impacts from space debris. Moreover, when compared with relevant experimental data, the material point method simulation proves to be an effective computational tool for researching and developing new types of Whipple shields.-
Key words:
- material point method /
- hypervelocity impact /
- Whipple shield /
- metastructure /
- space debris
-
表 1 Al2017和2Al2的Steinberg-Guinan模型参数
Table 1. Steinberg-Guinan model parameters for Al2017 and 2Al2
材料 $ E / \mathrm{G}\mathrm{P}\mathrm{a}$ $ \rho / (\mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3})$ $ \beta $ $ {Y}_{0} / \mathrm{M}\mathrm{P}\mathrm{a}$ $ {Y}_{\mathrm{m}\mathrm{a}\mathrm{x}}/ \mathrm{M}\mathrm{P}\mathrm{a} $ $ n $ $ {G}'_{p} $ $ {G}'_{T}/( \mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{K}}^{-1}) $ $ {Y}'_{p}$ $ {c}_{V} / (\mathrm{J}\cdot {\mathrm{k}\mathrm{g}}^{-1}\cdot {\mathrm{K}}^{-1}) $ Al2017 71.8 2 790 300 270 506 0.150 1.740 −16.00 0.016 7 900 2Al2 76.0 2 785 310 260 760 0.185 1.865 −17.62 0.017 0 863 表 2 Al2017和2Al2的Mie-Grüneisen状态方程参数
Table 2. Mie-Grüneisen equation of state parameters for Al2017 and 2Al2
材料 $ {c}_{\mathrm{g}}/(\mathrm{m}\cdot{\mathrm{s}}^{-1}) $ S1 S2 S3 γ0 Al2017 5 370 1.290 0 0 2.0 2Al2 5 328 1.338 0 0 2.0 表 3 实验与物质点法模拟得到的铝板穿孔直径的对比
Table 3. Comparison between experimental and MPM simulation perforation diameters of the aluminum plate
序号 弹丸直径/mm 弹丸速度/(km·s−1) 实验穿孔直径/mm 物质点法模拟穿孔直径/mm 相对误差/% 1 3.96 4.81 7.36 7.20 2.2 2 4.23 4.46 7.10 7.20 1.4 3 4.89 4.03 7.82 7.80 0.2 4 4.98 5.00 8.38 8.20 2.1 5 5.56 4.10 8.68 9.20 6.0 表 4 Al6061-T6和A2024-T4的Steinberg-Guinan模型参数[41]
Table 4. Steinberg-Guinan constitutive model parameters for Al6061-T6 and A2024-T4[41]
材料 $ E / \mathrm{G}\mathrm{P}\mathrm{a}$ $ \rho / (\mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3})$ $ \beta $ $ {Y}_{0}/ \mathrm{M}\mathrm{P}\mathrm{a} $ $ {Y}_{\rm{max}} /\mathrm{M}\mathrm{P}\mathrm{a}$ $ n $ $ {G}'_{p}$ $ {G}'_{T} / (\mathrm{M}\mathrm{P}\mathrm{a}\cdot {\mathrm{K}}^{-1}) $ $ {Y}'_{p} $ $ {c}_{V}/ (\mathrm{J}\cdot {\mathrm{k}\mathrm{g}}^{-1}{\cdot \mathrm{K}}^{-1}) $ Al6061-T6 73.4 2 703 125 290 680 0.100 1.800 –17.00 0.018 9 885 Al2024-T4 76.0 2 785 310 260 760 0.185 1.865 −17.62 0.017 0 863 表 5 Al6061-T6和Al2024-T4材料Mie-Grüneisen状态方程参数[41]
Table 5. Mie-Grüneisen equation of state parameters for Al6061-T6 and Al2024-T4[41]
材料 cg/(m·s−1) S1 S2 S3 γ0 Al6061-T6 5 240 1.400 0 0 1.97 Al2024-T4 5 328 1.338 0 0 2.00 表 6 主体碎片云膨胀尺寸
Table 6. Expansion size of the outer bubble debris clouds
Whipple屏类型 Da/mm Db/mm Dc/mm 单层铝板 96.0 67.2 65.8 铝球微气囊超结构 77.2 99.4 85.8 表 7 2种Whipple屏穿孔尺寸
Table 7. Perforation sizes of the two Whipple shields
类型 a/mm b/mm 铝球微气囊超结构Whipple屏面板 28.4 29.2 单层铝板Whipple屏面板 45.6 44.4 铝球微气囊超结构Whipple屏背板 57.6 64.8 单层铝板Whipple屏面背板 46.0 46.0 -
[1] ANZ-MEADOR P D. Orbital debris quarterly news [EB/OL]. https://orbitaldebris.jsc.nasa.gov/quarterly-news/#. [2] SINGH P K, KUMAR M. Protection of Whipple shield against hypervelocity impact of space debris: a review [J]. Sādhanā, 2024, 49(2): 105. DOI: 10.1007/s12046-024-02467-2. [3] PAI A, DIVAKARAN R, ANAND S, et al. Advances in the Whipple shield design and development: a brief review [J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 20–38. DOI: 10.1007/s40870-021-00314-7. [4] CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008. [5] SCHONBERG W P, TULLOS R J. Spacecraft wall design for increased protection against penetration by orbital debris impacts [J]. AIAA Journal, 1991, 29(12): 2207–2214. DOI: 10.2514/3.10861. [6] TANG E L, ZHAO L L, HAN Y F, et al. Research on the electromagnetic propagating characteristics of hypervelocity impact on the target with aperture and different potential conditions [J]. Aerospace Science and Technology, 2020, 107: 106274. DOI: 10.1016/j.ast.2020.106274. [7] MEJÍA-KAISER M I. Space debris mitigation guidelines [Z]. Brill Nijhoff, 2020: 381–389. DOI: 10.116/9789004411029_014. [8] CHRISTIANSEN E L. Meteoroid/debris shielding: TP-2003-210788 [R]. Washington: National Aeronautics and Space Administration, 2003. [9] WEN X Z, HUANG J, KE F W, et al. Preliminary study on shielding performance of debris shield with the rear wall combining light materials and an aluminum plate [J]. International Journal of Impact Engineering, 2019, 124: 31–36. DOI: 10.1016/j.ijimpeng.2018.10.006. [10] HE Q G, CHEN X W. Simulation method of debris cloud from fiber-reinforced composite shield under hypervelocity impact [J]. Acta Astronautica, 2023, 204: 402–417. DOI: 10.1016/j.actaastro.2023.01.008. [11] WHIPPLE F L. Meteorites and space travel [J]. The Astronomical Journal, 1947, 52: 131. DOI: 10.1086/106009. [12] ZHANG X T, LIU T, LI X G, et al. Hypervelocity impact performance of aluminum egg-box panel enhanced Whipple shield [J]. Acta Astronautica, 2016, 119: 48–59. DOI: 10.1016/j.actaastro.2015.10.013. [13] WEN K, CHEN X W, LU Y G. Research and development on hypervelocity impact protection using Whipple shield: an overview [J]. Defence Technology, 2021, 17(6): 1864–1886. DOI: 10.1016/j.dt.2020.11.005. [14] SLIMANE S A, SLIMANE A, GUELAILIA A, et al. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding [J]. Mechanics of Advanced Materials and Structures, 2022, 29(25): 4487–4505. DOI: 10.1080/15376494.2021.1931991. [15] REN S Y, LONG R R, ZHANG Q M, et al. The hypervelocity impact resistance behaviors of NbC/Al2024 ceramic-metal composites [J]. International Journal of Impact Engineering, 2021, 148: 103759. DOI: 10.1016/j.ijimpeng.2020.103759. [16] RICHARDSON A J, SANDERS J P. Development of dual bumper wall construction for advanced spacecraft [J]. Journal of Spacecraft and Rockets, 1972, 9(6): 448–451. DOI: 10.2514/3.61709. [17] SENNETT R E, LATHROP B L. Effects of hypervelocity impact on honeycomb structures [J]. Journal of Spacecraft and Rockets, 1968, 5(12): 1496–1497. DOI: 10.2514/3.29514. [18] WEN X Z, HUANG J, KE F W, et al. Debris dispersion effect in N-shape configuration [J]. Acta Astronautica, 2014, 104(1): 173–178. DOI: 10.1016/j.actaastro.2014.06.037. [19] KUMAR S K S, KIM Y, CHA J H, et al. Hybrid interspaced and free-boundary aramid fabric back bumper for hypervelocity impact shielding system [J]. International Journal of Impact Engineering, 2023, 171: 104377. DOI: 10.1016/j.ijimpeng.2022.104377. [20] KHODAEI M, FARAHANI S M, HAGHIGHI-YAZDI M. Numerical investigation of high velocity impact on foam-filled honeycomb structures including foam fracture model [J]. Mechanics of Advanced Materials and Structures, 2022, 29(5): 748–760. DOI: 10.1080/15376494.2020.1793239. [21] WARREN J, COLE M, OFFENBERGER S, et al. Hypervelocity impacts on honeycomb core sandwich panels filled with shear thickening fluid [J]. International Journal of Impact Engineering, 2021, 150: 103803. DOI: 10.1016/j.ijimpeng.2020.103803. [22] MOONEN J, RYAN S, KORTMANN L, et al. Evaluating UHMWPE-stuffed aluminium foam sandwich panels for protecting spacecraft against micrometeoroid and orbital debris impact [J]. International Journal of Impact Engineering, 2023, 180: 104668. DOI: 10.1016/j.ijimpeng.2023.104668. [23] CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al. Enhanced meteoroid and orbital debris shielding [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 217–228. DOI: 10.1016/0734-743X(95)99848-L. [24] BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046. [25] KIM Y, CHOI C, KUMAR S K S, et al. Behavior of dragon skin flexible metal bumper under hypervelocity impact [J]. International Journal of Impact Engineering, 2019, 125: 13–26. DOI: 10.1016/j.ijimpeng.2018.10.005. [26] REN S Y, ZHANG Q M, GAO F, et al. Impact resistance mechanism of reactive material bumper for spacecraft Whipple shield: experiments and numerical simulations [J]. Aerospace Science and Technology, 2022, 126: 107646. DOI: 10.1016/j.ast.2022.107646. [27] SMIRNOV N N, KISELEV A B, SMIRNOVA M N, et al. Space traffic hazards from orbital debris mitigation strategies [J]. Acta Astronautica, 2015, 109: 144–152. DOI: 10.1016/j.actaastro.2014.09.014. [28] ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005. [29] ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007. [30] WU Q, ZHANG Q M, LONG R R, et al. Potential space debris shield structure using impact-initiated energetic materials composed of polytetrafluoroethylene and aluminum [J]. Applied Physics Letters, 2016, 108(10): 101903. DOI: 10.1063/1.4943584. [31] REN S Y, ZHANG Q M, WU Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124–137. DOI: 10.1016/j.ijimpeng.2019.04.011. [32] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430. [33] SMIRNOV N N, KISELEV A B, ZAKHAROV P P. Numerical simulation of the hypervelocity impact of the ball and the spherical containment in three-material statement [J]. Acta Astronautica, 2020, 171: 215–224. DOI: 10.1016/j.actaastro.2020.03.010. [34] LU G X, YU T X. References [M]//LU G X, YU T X. Energy Absorption of Structures and Materials. Amsterdam: Elsevier, 2003: 385–400. DOI: 10.1533/9781855738584.references. [35] SHEN J H, LU G X, ZHAO L M, et al. Response of curved sandwich panels subjected to blast loading [J]. Journal of Performance of Constructed Facilities, 2011, 25(5): 382–393. DOI: 10.1061/(ASCE)CF.1943-5509.0000234. [36] JING L, WANG Z H, ZHAO L M. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading numerical simulations [J]. Composite Structures, 2013, 99: 213–223. DOI: 10.1016/j.compstruct.2012.12.013. [37] GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541. [38] YORK II A R, SULSKY D, SCHREYER H L. Fluid-membrane interaction based on the material point method [J]. International Journal for Numerical Methods in Engineering, 2000, 48(6): 901–924. DOI: 10.1002/(SICI)1097-0207(20000630)48:63.0.CO;2-T. [39] 迟润强, 庞宝君, 何茂坚, 等. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002.CHI R Q, PANG B J, HE M J, et al. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hyper-velocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. DOI: 10.3321/j.issn:1001-1455.2009.03.002. [40] 管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究 [J]. 高压物理学报, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006.GUAN G S, ZHANG W, PANG B J, et al. A study of penetration hole diameter in thin al-plate by hypervelocity impact of al-spheres [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132–138. DOI: 10.11858/gywlxb.2005.02.006. [41] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056. -