• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

碎化炸药缝隙挤压点火模拟实验

胡秋实 何杨 仲苏洋 傅华 廖深飞

胡秋实, 何杨, 仲苏洋, 傅华, 廖深飞. 碎化炸药缝隙挤压点火模拟实验[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0269
引用本文: 胡秋实, 何杨, 仲苏洋, 傅华, 廖深飞. 碎化炸药缝隙挤压点火模拟实验[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0269
HU Qiushi, HE Yang, ZHONG Suyang, FU Hua, LIAO Shenfei. Simulation experiment of ignition response of fragmented explosive under gap extrusion loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0269
Citation: HU Qiushi, HE Yang, ZHONG Suyang, FU Hua, LIAO Shenfei. Simulation experiment of ignition response of fragmented explosive under gap extrusion loading[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0269

碎化炸药缝隙挤压点火模拟实验

doi: 10.11883/bzycj-2024-0269
基金项目: 中国工程物理研究院院长基金自立项目(YZJJZL2023014)
详细信息
    作者简介:

    胡秋实(1984- ),男,博士,助理研究员,qiushihu@126.com

    通讯作者:

    廖深飞(1985- ),男,博士,副研究员,sfliao@foxmail.com

  • 中图分类号: O381; TJ55

Simulation experiment of ignition response of fragmented explosive under gap extrusion loading

  • 摘要: 采用造型粉模拟因碰撞过程极度碎化的压装炸药,研究了PBX造型粉缝隙挤压点火行为。基于射弹撞击的方式设计实验,为保证样品在设计的缝隙之外无其他流动空间,在样品表面覆盖垫层及涂抹油脂进行密封,采用高速摄影记录了造型粉挤入缝隙的运动及反应情况。改变缝隙面积和样品截面积的比例,研究了压实效应对点火的影响。结果表明,对于无油脂密封的情况,加载开始后PBX造型粉先历经颗粒破碎和压实,随后压实的造型粉从垫层附近的间隙挤出,挤出过程中发生点火,点火位置在炸药与垫层界面。对于有油脂密封的情况,PBX造型粉在压实后的一段时间内未发生点火,当压头行进到一半行程时,“楔形”滑移区形成,高速相机照片可见明显的滑移区-死区界面,随后变形模式从“单楔形”滑移区向“双楔形”滑移区演化,滑移区-死区界面剪切效应未引发点火。加载后期压头行进到接近缝隙表面,“楔形”滑移区消失,炸药在压头与缝隙发生碰撞的前后时刻分别发生一次点火,第1次点火发生在缝隙入口处,第2次点火发生在压头边角处。压实效应对点火行为有重要影响,造型粉压实后点火速度阈值明显降低,撞击速度仅4.5 m/s即可导致点火。
  • 图  1  实验装置

    Figure  1.  Experimental device

    图  2  加载方法示意图

    Figure  2.  Schematic diagram of loading method

    图  3  第1发实验的高速摄影图像

    Figure  3.  High-speed photographies of Exp. 1

    图  4  第2发实验一次点火高速摄影

    Figure  4.  High-speed photographies of first ignition in Exp. 2

    图  5  第2发实验二次点火高速摄影

    Figure  5.  High-speed photographies of second ignition in Exp. 2

    图  6  回收实验装置

    Figure  6.  Recovery device

    图  7  实验中的速度和压力信号

    Figure  7.  Velocity and stress signals in experiments

    图  8  样品安装情况

    Figure  8.  Sample installation

    图  9  射弹跌落加载实验

    Figure  9.  Projectile drop loading experiment

    图  10  实验回收情况

    Figure  10.  Recovery of experiment

    图  11  样品二次加载回收情况

    Figure  11.  Sample recovery after secondary loading

  • [1] 刘晨. 基于数字图像相关方法的PBX断裂行为研究 [D]. 北京: 中国工程物理研究院, 2016.

    LIU C. Study on fracture behavior of PBX based on digital image correlation method [D]. Beijing: China Academy of Engineering Physics, 2016.
    [2] 巩天元. 冲击载荷下PBX损伤与断裂行为研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001323.

    GONG T Y. Research on the damage and fracture behavior of PBX under impact load [D]. Taiyuan: North University of China, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001323.
    [3] 杨存丰, 田勇, 张伟斌, 等. 基于X射线显微CT的PBX热冲击损伤特征 [J]. 含能材料, 2022, 30(9): 959–965. DOI: 10.11943/CJEM2021247.

    YANG C F, TIAN Y, ZHANG W B, et al. Thermal shock damage characteristics of Polymer Bonded Explosive based on X-ray micro-computed tomography [J]. Chinese Journal of Energetic Materials, 2022, 30(9): 959–965. DOI: 10.11943/CJEM2021247.
    [4] 李俊玲. PBX炸药装药的力学性能及损伤破坏研究 [D]. 长沙: 国防科学技术大学, 2012.

    LI J L. Study on PBX’s mechanical behavior and damage feature [D]. Changsha: National University of Defense Technology, 2012.
    [5] 高霞, 赵天波, 郑保辉, 等. 不同壁材石蜡微胶囊与HTPB型黏结剂的表界面研究 [J]. 火炸药学报, 2020, 43(2): 161–166. DOI: 10.14077/j.issn.1007-7812.201905012.

    GAO X, ZHAO T B, ZHENG B H, et al. Surface and interface study on the MePWs with different shells and HTPB-type binder [J]. Chinese Journal of Explosives & Propellants, 2020, 43(2): 161–166. DOI: 10.14077/j.issn.1007-7812.201905012.
    [6] 陈世雄, 钱华, 芮久后, 等. 高品质RDX的抗压性能研究 [J]. 爆破器材, 2023, 52(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2023.06.001.

    CHEN S X, QIAN H, RUI J H, et al. Research on the compressive performance of H-RDX [J]. Explosive Materials, 2023, 52(6): 1–8. DOI: 10.3969/j.issn.1001-8352.2023.06.001.
    [7] 张催. 基于CT成像的炸药造型颗粒集特征参量表征方法: ZWCF-2021-050 [R]. 绵阳: 中国工程物理研究院化工材料研究所, 2022.

    ZHANG C. Characterization method of characteristic parameters of explosive modeling particle set based on CT imaging: ZWCF-2021-050 [R]. Mianyang: Institute of Chemical Materials, CAEP, 2022.
    [8] 杨昆, 吴艳青, 金朋刚, 等. 典型压装与浇注PBX炸药缝隙挤压损伤-点火响应 [J]. 含能材料, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.

    YANG K, WU Y Q, JIN P G, et al. Damage-ignition simulation for typical pressed and casted PBX under crack-extruded loading [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.
    [9] YANG K, DONG L Y, WU Y Q. Viscous shear flow and heating of impact-extruded composite energetic materials [J]. International Journal of Mechanical Sciences, 2023, 258: 108588. DOI: 10.1016/j.ijmecsci.2023.108588.
    [10] 陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究 [J]. 火炸药学报, 2020, 43(1): 69–73,80. DOI: 10.14077/j.issn.1007-7812.201901003.

    CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 69–73,80. DOI: 10.14077/j.issn.1007-7812.201901003.
    [11] 胡秋实, 尚海林, 吴兆奎, 等. PBX炸药缝隙挤压加载下的破裂模式及点火响应 [J]. 兵工学报, 2024, 45(9): 3135–3146. DOI: 10.12382/bgxb.2023.0809.

    HU Q S, SHANG H L, WU Z K, et al. Fracture mode and ignition response of PBX explosives under crack extrusion loading [J]. Acta Armamentarii, 2024, 45(9): 3135–3146. DOI: 10.12382/bgxb.2023.0809.
    [12] 董军, 王晶禹, 梁磊, 等. LLM-105/EPDM造型粉的制备及性能 [J]. 火炸药学报, 2009, 32(5): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.05.005.

    DONG J, WANG J Y, LIANG L, et al. Preparation and properties of LLM-105/EPDM molding powders [J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.05.005.
    [13] 牛磊, 曹少庭, 金大勇, 等. 含α-AlH3的HMX基凝聚相炸药的安全性和爆轰性能 [J]. 含能材料, 2021, 29(10): 957–963. DOI: 10.11943/CJEM2021079.

    NIU L, CAO S T, JIN D Y, et al. Safety and detonation performance of HMX-based condensed phase explosives containing α-AlH3 [J]. Chinese Journal of Energetic Materials, 2021, 29(10): 957–963. DOI: 10.11943/CJEM2021079.
    [14] 刘意, 朱瑞, 时嘉辉, 等. 液滴微流控技术制备亚微米级HNS基PBX复合微球 [J]. 含能材料, 2023, 31(2): 121–129. DOI: 10.11943/CJEM2022184.

    LIU Y, ZHU R, SHI J H, et al. Preparation of submicron HNS-based PBX composite microspheres by droplet microfluidics [J]. Chinese Journal of Energetic Materials, 2023, 31(2): 121–129. DOI: 10.11943/CJEM2022184.
    [15] 朱玉宇, 霍宏彪, 王杰超, 等. NC/F2602/RDX复合微球悬浮组装成型及其性能研究 [J]. 火工品, 2023(1): 58–62. DOI: 10.3969/j.issn.1003-1480.2023.01.012.

    ZHU Y Y, HUO H B, WANG J C, et al. The suspension assembly and properties of NC/F2602/RDX composite microspheres [J]. Initiators & Pyrotechnics, 2023(1): 58–62. DOI: 10.3969/j.issn.1003-1480.2023.01.012.
    [16] 谢林, 刘迎彬, 范志强, 等. 基于复合压电效应的PVDF传感器测量性能调控 [J]. 高压物理学报, 2023, 37(4): 043401. DOI: 10.11858/gywlxb.20230645.

    XIE L, LIU Y B, FAN Z Q, et al. Measurement performance regulation of PVDF sensor based on composite piezoelectricity [J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043401. DOI: 10.11858/gywlxb.20230645.
    [17] 刘昊. 基于光纤干涉降频技术的高速测量系统研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001041.

    LIU H. Research on high-speed measurement system based on fiber optic interference frequency reduction technology [D]. Taiyuan: North University of China, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001041.
    [18] 王琦, 智小琦, 肖游, 等. 基于UCM模型的B炸药慢烤泄压结构的作用分析 [J]. 爆炸与冲击, 2022, 42(4): 042301. DOI: 10.11883/bzycj-2021-0253.

    WANG Q, ZHI X Q, XIAO Y, et al. Analysis of the effect of a venting structure on slow cookoff of Comp-B based on a universal cookoff model [J]. Explosion and Shock Waves, 2022, 42(4): 042301. DOI: 10.11883/bzycj-2021-0253.
    [19] 王平, 崔建忠. 金属塑性成形力学 [M]. 北京: 冶金工业出版社, 2006.

    WANG P, CUI J Z. Mechanics of metal plastic forming [M]. Beijing: Metallurgical Industry Press, 2006.
    [20] 郝鹏程, 冯其京, 洪滔, 等. 钝感炸药点火增长模型的欧拉数值模拟 [J]. 爆炸与冲击, 2012, 32(3): 243–250. DOI: 10.3969/j.issn.1001-1455.2012.03.004.

    HAO P C, FENG Q J, HONG T, et al. Eulerian simulation on insensitive explosives with the ignition-growth reactive model [J]. Explosion and Shock Waves, 2012, 32(3): 243–250. DOI: 10.3969/j.issn.1001-1455.2012.03.004.
    [21] 孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.

    SUN C W. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000.
    [22] WEN H N, TANG X F, JIN J S, et al. Effect of extrusion ratios on microstructure evolution and strengthening mechanisms of a novel P/M nickel-based superalloy [J]. Materials Science and Engineering: A, 2022, 847: 143356. DOI: 10.1016/j.msea.2022.143356.
    [23] NEWHALL K A, DURIAN D J. Projectile-shape dependence of impact craters in loose granular media [J]. Physical Review E, 2003, 68(6): 060301. DOI: 10.1103/PhysRevE.68.060301.
    [24] EGAWA K, KATSURAGI H. Bouncing of a projectile impacting a dense potato-starch suspension layer [J]. Physics of Fluids, 2019, 31(5): 053304. DOI: 10.1063/1.5095678.
    [25] DINOVITZER H A, LARONCHE A, ALBERT J. Fiber Bragg Grating high impact force sensors with adjustable sensitivity and dynamic range [J]. IEEE Sensors Journal, 2019, 19(14): 5670–5679. DOI: 10.1109/JSEN.2019.2907867.
  • 加载中
图(11)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  16
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-11
  • 修回日期:  2024-12-13
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回