• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

铝蜂窝夹芯板入水冲击动态响应特性实验研究

郭开岭 廖永 朱志奎 刘栋 朱凌

郭开岭, 廖永, 朱志奎, 刘栋, 朱凌. 铝蜂窝夹芯板入水冲击动态响应特性实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0274
引用本文: 郭开岭, 廖永, 朱志奎, 刘栋, 朱凌. 铝蜂窝夹芯板入水冲击动态响应特性实验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0274
GUO Kailing, LIAO Yong, ZHU Zhikui, LIU Dong, ZHU Ling. Experimental study on dynamic responses of aluminum honeycomb sandwich plates subjected to water impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0274
Citation: GUO Kailing, LIAO Yong, ZHU Zhikui, LIU Dong, ZHU Ling. Experimental study on dynamic responses of aluminum honeycomb sandwich plates subjected to water impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0274

铝蜂窝夹芯板入水冲击动态响应特性实验研究

doi: 10.11883/bzycj-2024-0274
基金项目: 国家自然科学基金(12202328,12172265)
详细信息
    作者简介:

    郭开岭(1989- ),男,博士,副教授,guokailing@whut.edu.cn

    通讯作者:

    朱 凌(1962- ),男,博士,教授,lingzhu@whut.edu.cn

  • 中图分类号: O353.4

Experimental study on dynamic responses of aluminum honeycomb sandwich plates subjected to water impact

  • 摘要: 通过实验方法研究了铝蜂窝夹芯板在入水冲击载荷作用下的压力载荷特性和结构变形机理。首先,搭建了蜂窝夹芯板入水冲击实验平台,开展了不同落体高度下的蜂窝夹芯板入水冲击实验,通过三维扫描仪得到了面板的变形结果,并监测了不同测点的入水冲击压力时程,同时验证了实验的可重复性。在此基础上,研究了蜂窝夹芯板入水冲击过程中的压力载荷特性,并与不同结构的入水冲击压力进行了对比。此外,分析了蜂窝夹芯板的变形模式、最终挠度等特性,给出了面板最终挠度和芯层压缩量的拟合公式。研究结果表明,蜂窝夹芯板表面的入水冲击压力分布不均匀,但在一定落体高度范围内,其压力峰值均与落体高度近似呈线性变化。与刚性平板入水冲击相比,蜂窝夹芯板的入水冲击压力峰值较小。相比同质量的等效铝板而言,蜂窝夹芯板的入水冲击压力峰值更小,压力持续时间更长。不同落体高度下,蜂窝夹芯板的面板变形模式基本一致。随着落体高度的增加,蜂窝夹芯板前面板和后面板中点处的最终挠度近似呈斜率减小的二次抛物线增长。在入水冲击载荷作用下,蜂窝夹芯板后面板变形明显小于等效铝板变形,表明蜂窝夹芯板具有更好的抗冲击性能。
  • 图  1  入水冲击实验装置

    Figure  1.  Water impact experimental device

    图  2  实验试样安装箱体

    Figure  2.  Installation box of test sample

    图  3  夹芯板试样三维示意图

    Figure  3.  Three-dimensional sketch of AHSPs

    图  4  夹具与蜂窝夹芯板安装示意图

    Figure  4.  Installation diagram of AHSP and fixture

    图  5  入水试样和测点位置

    Figure  5.  Water impact specimen and measuring point locations

    图  6  重复实验的入水冲击压力时程曲线

    Figure  6.  Water impact pressure time-history curves for repeated water impact tests

    图  7  重复实验的蜂窝夹芯板中剖面变形轮廓

    Figure  7.  Mid-section deformation profiles of AHSPs for repeated water impact tests

    图  8  蜂窝夹芯板落体入水冲击过程

    Figure  8.  Impact process of AHSP dropping into water

    图  9  不同落体高度下入水冲击压力时程曲线

    Figure  9.  Time-history curves of water impact pressure under different drop heights

    图  10  不同落体高度下压力测点的入水冲击压力峰值

    Figure  10.  Peak values of water impact pressure at pressure measuring points under different drop heights

    图  11  入水冲击压力峰值与落体高度的关系曲线 (AL: aluminum plate; ST: steel plate)

    Figure  11.  Relationship between peak value of water impact pressure and water entry velocity (AL: aluminum plate; ST: steel plate)

    图  12  入水冲击压力持续时间的定义

    Figure  12.  Definition of water impact pressure duration

    图  13  典型落体高度下蜂窝夹芯板与质量等效铝板入水冲击压力对比

    Figure  13.  Comparison of water impact pressure between AHSPs and ALs under typical drop heights

    图  14  0.6 m落体高度下蜂窝夹芯板前面板变形模式

    Figure  14.  Front sheet deformation of AHSPs under 0.6 m drop height

    图  15  0.8 m落体高度下蜂窝夹芯板前面板变形模式

    Figure  15.  Front sheet deformation of AHSPs under 0.8 m drop height

    图  16  0.6 m落体高度下蜂窝夹芯板后面板变形模式

    Figure  16.  Deformation of back sheet of AHSPs under 0.6 m drop height

    图  17  0.8 m落体高度下蜂窝夹芯板后面板变形模式

    Figure  17.  Deformation of back sheet of AHSPs under 0.8 m drop height

    图  18  典型落体高度下蜂窝夹芯板的3D扫描中剖面变形

    Figure  18.  Sectional deformation of AHSPs in 3D scanning under typical drop heights

    图  19  蜂窝夹芯板与等效铝板中剖面变形轮廓

    Figure  19.  Deformation profiles of the middle section of AHSPs and ALs

    图  20  蜂窝芯层压缩变形情况

    Figure  20.  Compression deformation diagram of AHSPs

    图  21  不同落体高度下蜂窝夹芯板中点最终挠度

    Figure  21.  Permanent deflection of the midpoint of AHSPs at different drop heights

    表  1  蜂窝夹芯板材料及尺寸

    Table  1.   Material properties and dimensions of AHSPs

    蜂窝夹芯板 材料类型 总体尺寸/mm 有效尺寸/mm 厚度/mm l/mm δsingle/mm δdouble/mm
    前面板 Al 1060 350×350 250×250 0.5
    芯层 Al 3003 250×250 250×250 15 15 0.04 0.08
    后面板 Al 1060 350×350 250×250 0.5
    下载: 导出CSV

    表  2  数据测量与采集系统

    Table  2.   Data measurement and acquisition system

    测量设备用途
    M+P动态采集分析系统P1和P2测点的压力时程
    三维激光扫描仪前面板和后面板的变形
    高速摄像机入水冲击箱体的实测入水速度
    LED灯实验场景补光
    下载: 导出CSV

    表  3  入水冲击实验工况

    Table  3.   Cases for water impact tests

    工况 h/m
    1 0.4
    2 0.5
    3 0.6
    4 0.7
    5 0.8
    下载: 导出CSV

    表  4  不同落体高度下对应的速度

    Table  4.   Water entry velocity under different drop heights

    h/m vb/(m·s−1) va/(m·s−1) 相对误差/%
    0.4 2.80 2.76 1.43
    0.5 3.13 3.08 1.60
    0.6 3.43 3.39 1.17
    0.7 3.70 3.65 1.35
    0.8 3.96 3.90 1.52
    下载: 导出CSV

    表  5  重复性实验结果

    Table  5.   Results of the repeated water impact tests

    实验编号 压力峰值/kPa 中点最终挠度/mm
    P1测点 P2测点 前面板 后面板
    Test-R-1 200.86 169.05 5.69 4.63
    Test-R-2 204.36 168.70 5.76 4.72
    Test-R-3 208.51 167.06 5.69 4.75
    η/% 1.87 0.63 0.71 1.33
    下载: 导出CSV

    表  6  不同落体高度的蜂窝夹芯板测点P1和P2的压力持续时间

    Table  6.   Pressure duration at P1 and P2 of AHSPs under different drop heights

    h/m测点P1压力持续时间/ms测点P2压力持续时间/ms
    0.48.9310.32
    0.510.559.11
    0.613.3611.20
    0.712.1511.63
    0.810.8611.68
    下载: 导出CSV

    表  7  蜂窝夹芯板最终挠度曲线拟合相关性指标

    Table  7.   Correlation index of permanent deflection curve fitting of AHSPs

    曲线类型拟合方式R2
    前面板多项式拟合-二次0.996 73
    后面板多项式拟合-二次0.983 53
    蜂窝芯层多项式拟合-二次0.994 40
    下载: 导出CSV
  • [1] 王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [2] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [3] 潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.

    PAN G, YANG K. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
    [4] CHUANG S L. Experiments on flat-bottom slamming [J]. Journal of Ship Research, 1966, 10(1): 10–17. DOI: 10.5957/jsr.1966.10.1.10.
    [5] CHUANG S L. Investigation of impact of rigid and elastic bodies with water: NSRDC-3284 [R]. Bethesda: Naval Ship Research and Development Center, 1970.
    [6] SHIN H, SEO B, CHO S R. Experimental investigation of slamming impact acted on flat bottom bodies and cumulative damage [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(3): 294–306. DOI: 10.1016/j.ijnaoe.2017.06.004.
    [7] TALIOUA A, BERKANE B, MARTIN M B, et al. Flat plate pressure impact on a still water surface: the effect of surrounding ambient pressure and plate size [J]. Ocean Engineering, 2022, 263: 111926. DOI: 10.1016/j.oceaneng.2022.111926.
    [8] ZHU L, ZHU Z K, YU T X, et al. An experimental study of the saturated impulse for metal plates under slamming [J]. International Journal of Impact Engineering, 2023, 178: 104601. DOI: 10.1016/j.ijimpeng.2023.104601.
    [9] VON KARMAN T. The impact on seaplane floats during landing: NACA-TN-321 [R]. Washington: National Advisory Committee for Aeronautics, 1929.
    [10] WAGNER H. Über stoß- und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215. DOI: 10.1002/zamm.19320120402.
    [11] 陈小平, 李军伟, 王辉, 等. 大尺度楔形体板架钢模落体试验和仿真研究 [J]. 船舶力学, 2012, 16(10): 1152–1163. DOI: 10.3969/j.issn.1007-7294.2012.10.007.

    CHEN X P, LI J W, WANG H, et al. Experiments and numerical investigation of water entry of large-scale steel wedge models [J]. Journal of Ship Mechanics, 2012, 16(10): 1152–1163. DOI: 10.3969/j.issn.1007-7294.2012.10.007.
    [12] 王明振, 褚林塘, 吴彬, 等. 水陆两栖飞机典型横截面入水撞击实验研究 [J]. 爆炸与冲击, 2016, 36(3): 313–318. DOI: 10.11883/1001-1455(2016)03-0313-06.

    WANG M Z, CHU L T, WU B, et al. Experimental study on the water impact of a typical cross section for amphibious seaplane [J]. Explosion and Shock Waves, 2016, 36(3): 313–318. DOI: 10.11883/1001-1455(2016)03-0313-06.
    [13] ZHU L, DUAN L L, CHEN M S, et al. Equivalent design pressure for ship plates subjected to moving slamming impact loads [J]. Marine Structures, 2020, 71: 102741. DOI: 10.1016/j.marstruc.2020.102741.
    [14] DUAN L L, ZHU L, CHEN M S, et al. Experimental study on the propagation characteristics of the slamming pressures [J]. Ocean Engineering, 2020, 217: 107868. DOI: 10.1016/j.oceaneng.2020.107868.
    [15] PARK I C, SEO B C, LEE S H, et al. A study on slamming impact load characteristics of energy storage system case for ships [J]. Journal of Marine Science and Engineering, 2023, 11(1): 44. DOI: 10.3390/jmse11010044.
    [16] 骆寒冰, 刘鑫, 董德龙, 等. 铝制加筋板楔形体入水砰击模型实验研究 [J]. 水动力学研究与进展A辑, 2014, 29(4): 460–468. DOI: 10.3969/j.issn1000-4874.2014.04.011.

    LUO H B, LIU X, DONG D L, et al. Experimental investigation of water impact of one free-drop wedge with stiffened aluminum panels [J]. Chinese Journal of Hydrodynamics, 2014, 29(4): 460–468. DOI: 10.3969/j.issn1000-4874.2014.04.011.
    [17] CRUPI V, EPASTO G, GUGLIELMINO E. Comparison of aluminium sandwiches for lightweight ship structures: honeycomb vs. foam [J]. Marine Structures, 2013, 30: 74–96. DOI: 10.1016/j.marstruc.2012.11.002.
    [18] PALOMBA G, EPASTO G, SUTHERLAND L, et al. Aluminium honeycomb sandwich as a design alternative for lightweight marine structures [J]. Ships and Offshore Structures, 2022, 17(10): 2355–2366. DOI: 10.1080/17445302.2021.1996109.
    [19] DAS K, BATRA R C. Local water slamming impact on sandwich composite hulls [J]. Journal of Fluids and Structures, 2011, 27(4): 523–551. DOI: 10.1016/j.jfluidstructs.2011.02.001.
    [20] XIE H, REN H L, QU S, et al. Numerical and experimental study on hydroelasticity in water-entry problem of a composite ship-hull structure [J]. Composite Structures, 2018, 201: 942–957. DOI: 10.1016/j.compstruct.2018.06.030.
    [21] HASSOON O H, TARFAOUI M, EL MOUMEN A, et al. Mechanical performance evaluation of sandwich panels exposed to slamming impacts: comparison between experimental and SPH results [J]. Composite Structures, 2019, 220: 776–783. DOI: 10.1016/j.compstruct.2019.04.051.
    [22] 赵飞, 程远胜, 刘均, 等. 入水砰击下金字塔点阵夹层板塑性动力响应分析 [J]. 船海工程, 2013, 42(3): 13–16. DOI: 10.3963/j.issn.1671-7953.2013.03.003.

    ZHAO F, CHENG Y S, LIU J, et al. Dynamic plastic responses of light weight pyramidal sandwich plate structures subjected to water-entry impact [J]. Ship & Ocean Engineering, 2013, 42(3): 13–16. DOI: 10.3963/j.issn.1671-7953.2013.03.003.
    [23] HE W T, CUI X F, WANG C Z, et al. Coupled Eulerian-Lagrangian (CEL) characterization of slamming response and failure mechanism on corrugated sandwich structures [J]. Applied Ocean Research, 2021, 116: 102862. DOI: 10.1016/j.apor.2021.102862.
    [24] WANG H, CHENG Y S, LIU J, et al. Hydroelastic behaviours of laser-welded lightweight corrugated sandwich panels subjected to water impact: experiments and simulations [J]. Thin-Walled Structures, 2020, 146: 106452. DOI: 10.1016/j.tws.2019.106452.
    [25] FALTINSEN O M, KVÅLSVOLD J, AARSNES J V. Wave impact on a horizontal elastic plate [J]. Journal of Marine Science and Technology, 1997, 2(2): 87–100. DOI: 10.1007/BF02491523.
    [26] OKADA S, SUMI Y. Experimental study on the maximum pressure and the duration time of the horizontal water impact of flat plate [J]. Journal of the Society of Naval Architects of Japan, 1995, 1995(178): 381–389. DOI: 10.2534/jjasnaoe1968.1995.178_381.
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  16
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-12-02
  • 网络出版日期:  2024-12-04

目录

    /

    返回文章
    返回