• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

CFRP布加固砌体填充墙抗爆分析与设计

吴昊 陈文彬 陈德

吴昊, 陈文彬, 陈德. CFRP布加固砌体填充墙抗爆分析与设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0280
引用本文: 吴昊, 陈文彬, 陈德. CFRP布加固砌体填充墙抗爆分析与设计[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0280
WU Hao, CHEN Wenbin, CHEN De. Blast-resistant analysis and design of CFRP sheet strengthened masonry infilled walls[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0280
Citation: WU Hao, CHEN Wenbin, CHEN De. Blast-resistant analysis and design of CFRP sheet strengthened masonry infilled walls[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0280

CFRP布加固砌体填充墙抗爆分析与设计

doi: 10.11883/bzycj-2024-0280
基金项目: 国家自然科学基金(52408555,52078379);中国博士后科学基金(2024M752411);东南大学爆炸安全防护教育部工程研究中心开放基金(2024-SPEIKF-001)
详细信息
    作者简介:

    吴 昊(1981— ),男,博士,教授,wuhaocivil@tongji.edu.cn

    通讯作者:

    陈 德(1992— ),男,博士,博士后,chende@tongji.edu.cn

  • 中图分类号: O383; TU362

Blast-resistant analysis and design of CFRP sheet strengthened masonry infilled walls

  • 摘要: 为研究爆炸作用下碳纤维增强聚合物(carbon fiber reinforced polymer, CFRP)布加固砌体填充墙的抗爆性能及设计方法,首先,采用有限元软件LS-DYNA建立砌体填充墙的简化分离有限元模型及CFRP布加固抗爆分析模型,通过与已有的9组未加固和CFRP布加固砌体填充墙的野外爆炸试验结果进行对比,验证了所采用的墙体简化分离建模方法、砌体和CFRP布本构模型及参数以及相应接触算法的适用性。然后,参考标准GB 50608—2020推荐的砌体墙CFRP抗震加固方式,通过对比分析爆炸作用下CFRP布加固原型砌体填充墙的动力行为,建议优先采用对角双向加固方式,其次是垂直双向和横向满铺加固方式,不建议采用竖向满铺和混合三向加固方式。最后,以同时满足CFRP布基本保持完整、墙体中心不发生砌块飞散以及墙体中心最大面外挠度小于墙厚为设计目标,得出典型小轿车(227 kg TNT当量)和手提包炸弹(23 kg TNT当量)在不同比例距离爆炸时,对应6~9度抗震设防等级要求的3种拉结筋布置形式(无/截断/通长拉结筋)原型墙体需要加固的比例距离范围分别为0.8~2.0 m/kg1/3和0.2~1.2 m/kg1/3,进一步给出了最优CFRP布加固层数建议。结果表明,拉结筋布置对最优加固层数的影响较小,仅影响墙体需要加固的临界爆炸比例距离。
  • 图  1  砌体填充墙的数值模型

    Figure  1.  Masonry infilled wall models in numerical simulations

    图  2  CFRP布加固砌体填充墙有限元模型

    Figure  2.  Finite element model of CFRP sheet strengthened masonry infilled wall

    图  3  RHT模型[12]

    Figure  3.  RHT model[12]

    图  4  单向FRP布及示意图

    Figure  4.  Unidirectional FRP sheet and schematic diagram

    图  5  内聚力接触模型[12]

    Figure  5.  Cohesive contact model[12]

    图  6  试验布置[5]和有限元模型

    Figure  6.  Test setup[5] and finite element model

    图  7  墙体破坏过程与最终破坏模式的对比

    Figure  7.  Failure processes and comparisons of final failure modes of walls

    图  8  反射超压时程曲线的对比(1 kg)

    Figure  8.  Comparisons of reflected overpressure-time histories (1 kg)

    图  9  试验布置[9]及有限元模型

    Figure  9.  Test setup[9] and finite element model

    图  10  爆炸后墙体和CFRP布破坏模式

    Figure  10.  Post-blast failure modes of walls and CFRP sheet

    图  11  试验布置[7]和有限元模型

    Figure  11.  Test setup[7] and finite element model

    图  12  砌体填充墙面外位移时程对比

    Figure  12.  Comparisons of out-of-plane displacement-time histories of masonry infilled walls

    图  13  未加固砌体填充墙破坏模式的对比

    Figure  13.  Comparisons of damage modes of unstrengthening masonry infilled wall

    图  14  未加固原型砌体填充墙示意图(单位:mm)

    Figure  14.  Schematic diagram of unstrengthening prototype masonry infilled wall (unit: mm)

    图  15  CFRP加固砌体填充墙示意图

    Figure  15.  Schematic diagrams of CFRP-strengthened masonry infilled walls

    图  16  CFRP加固墙体瞬时面外位移云图

    Figure  16.  Instantaneous out-of-plane displacement contours of CFRP-strengthened walls

    图  17  不同CFRP加固方式下墙体中心位移时程曲线

    Figure  17.  Central displacement-time histories of walls with different CFRP strengthening methods

    图  18  墙体拉结筋布置和最优CFRP加固方式

    Figure  18.  Arrangement of tie bar and optimal CFRP strengthening methods

    图  19  小轿车炸弹爆炸下不同拉结筋布置墙体破坏模式

    Figure  19.  Failure modes of masonry walls with different arrangements of tie bar under sedan bomb

    图  20  小轿车炸弹爆炸下不同CFRP加固层数无拉结筋墙体破坏模式

    Figure  20.  Failure modes of masonry walls (no tie bar) with different layers of CFRP under sedan bomb

    表  1  CFRP材料参数[7, 22]

    Table  1.   Material parameters of CFRP[7, 22]

    密度/(kg·m−3)厚度/mmνXt/MPaYt/MPaSc/MPaE11/GPaE22/GPaεf,tεm,t
    1 5800.1670.0192 8008717021890.0160.012
    下载: 导出CSV

    表  2  1 kg炸药工况下峰值反射超压的对比

    Table  2.   Comparisons of peak reflected overpressures (1 kg)

    测点 峰值反射超压/MPa 相对误差/%
    试验值[5] 模拟值
    1 6.3 5.8 −7.9
    4 3.3 2.7 −18.2
    下载: 导出CSV

    表  3  砌体填充墙的加固方式

    Table  3.   Strengthening methods of masonry infilled wall

    加固方式 横向CFRP布参数 纵向CFRP布参数 斜向CFRP布参数
    M L/mm W/mm N L/mm W/mm O L/mm W/mm
    未加固
    横向满铺 1 2 500
    竖向满铺 1 3 700
    垂直双向 13 200 100 19 200 100
    对角双向 42 200 100
    混合三向 13 200 100 20 300 100
    下载: 导出CSV

    表  4  墙体最优CFRP加固层数

    Table  4.   Optimal number of CFRP layers for strengthening walls

    爆炸源 比例距离/(m·kg−1/3) 不同拉结筋布置墙体最优加固层数
    无拉结筋布置 截断拉结筋布置 通长拉结筋布置
    小轿车炸弹(227 kg)2.0无需加固无需加固无需加固
    1.81无需加固无需加固
    1.6111
    1.4111
    1.2222
    1.0333
    0.8无加固必要无加固必要无加固必要
    手提包炸弹(23 kg)1.2无需加固无需加固无需加固
    1.0111
    0.8111
    0.6222
    0.4222
    0.2无加固必要无加固必要无加固必要
    下载: 导出CSV
  • [1] THOMPSON D, BROWN S, MALLONEE S, et al. Fatal and non-fatal injuries among U. S. Air Force personnel resulting from the terrorist bombing of the Khobar Towers [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2004, 57(2): 208–215. DOI: 10.1097/01.TA.0000142672.99660.80.
    [2] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608–2020 [S]. 北京: 中国计划出版社, 2020.

    Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608–2020 [S]. Beijing: China Planning Press, 2020.
    [3] ACI 440 Committee. ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [S]. Farmington Hills, MI: American Concrete Institute, 2008.
    [4] ORTON S L, CHIARITO V P, MINOR J K, et al. Experimental testing of CFRP-strengthened reinforced concrete slab elements loaded by close-in blast [J]. Journal of Structural Engineering, 2014, 140(2): 04013060. DOI: 10.1061/(ASCE)ST.1943-541X.0000821.
    [5] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002.
    [6] MUSZYNSKI L C, PURCELL M R. Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast [J]. Journal of Composites for Construction, 2003, 7(2): 98–108. DOI: 10.1061/(ASCE)1090-0268(2003)7:2(98).
    [7] CHEN L, FANG Q, FAN J Y, et al. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings [J]. Advances in Structural Engineering, 2014, 17(6): 817–836. DOI: 10.1260/1369-4332.17.6.817.
    [8] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸实验研究 [J]. 工程力学, 2019, 36(S1): 293–297. DOI: 10.6052/j.issn.1000-4750.2018.04.S062.

    WAN J. Blast response of CFRP-reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2019, 36(S1): 293–297. DOI: 10.6052/j.issn.1000-4750.2018.04.S062.
    [9] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions [J]. International Journal of Impact Engineering, 2019, 129: 66–79. DOI: 10.1016/j.ijimpeng.2019.02.013.
    [10] TAN K H, PATOARY M K H. Blast resistance of FRP-strengthened masonry walls. I: approximate analysis and field explosion tests [J]. Journal of Composites for Construction, 2009, 13(5): 422–430. DOI: 10.1061/(ASCE)1090-0268(2009)13:5(422).
    [11] 胡嘉辉, 吴昊, 方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟 [J]. 振动与冲击, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.

    HU J H, WU H, FANG Q, et al. Numerical simulation of damage and dynamic response of masonry infilled wall under near zone explosion [J]. Journal of Vibration and Shock, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.
    [12] CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. DOI: 10.1016/j.ijimpeng.2023.104529.
    [13] HAO H, WU C Q. Numerical simulation of damage of low-rise RC frame structures with infilled masonry walls to explosive loads [J]. Australian Journal of Structural Engineering, 2006, 7(1): 13–22. DOI: 10.1080/13287982.2006.11464960.
    [14] ALSAYED S H, ELSANADEDY H M, AL-ZAHERI Z M, et al. Blast response of GFRP-strengthened infill masonry walls [J]. Construction and Building Materials, 2016, 115: 438–451. DOI: 10.1016/j.conbuildmat.2016.04.053.
    [15] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究 [J]. 工程力学, 2020, 37(S1): 82–90. DOI: 10.6052/j.issn.1000-4750.2019.04.S012.

    WAN J. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(S1): 82–90. DOI: 10.6052/j.issn.1000-4750.2019.04.S012.
    [16] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055.
    [17] 彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.

    PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.
    [18] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual [M]. Livermore, CA: LSTC, 2018.
    [19] 中华人民共和国住房和城乡建设部. 砌体基本力学性能试验方法标准: GB/T 50129-2011 [S]. 北京: 中国计划出版社, 2012.

    Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Standard for test method of basic mechanics properties of masonry: GB/T 50129-2011 [S]. Beijing: China Planning Press, 2012.
    [20] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure [J]. Journal of Composite Materials, 1987, 21(9): 809–833. DOI: 10.1177/002199838702100903.
    [21] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904.
    [22] KRISHNAMOORTHY S K, HÖPTNER J, KOPP G, et al. Prediction of structural response of FRP composites for conceptual design of vehicles under impact loading [C]// ALYOTECH. Proceedings of the 8th European LS-DYNA Conference. Strasburg, 2011.
    [23] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439–449. DOI: 10.1016/0266-3538(96)00005-X.
    [24] 刘桂秋. 砌体结构基本受力性能的研究 [D]. 长沙: 湖南大学, 2005.

    LIU G Q. The research on the basic mechanical behavior of masonry structure [D]. Changsha: Hunan University, 2005.
    [25] 蒋济同, 周新智. 基于分离式建模的砌体墙力学性能有限元分析参数探讨 [J]. 建筑结构, 2019, 49(S1): 640–644. DOI: 10.19701/j.jzjg.2019.S1.133.

    JIANG J T, ZHOU X Z. Discussion on parameters in finite element analysis of mechanical properties of masonry wall based on separation modeling [J]. Building Structure, 2019, 49(S1): 640–644. DOI: 10.19701/j.jzjg.2019.S1.133.
    [26] 中华人民共和国住房和城乡建设部. 砌体结构设计规范: GB 50003-2011 [S]. 北京: 中国计划出版社, 2012.

    Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Code for design of masonry structures: GB 50003-2011 [S]. Beijing: China Planning Press, 2012.
    [27] VAN DER PLUIJM R. Out-of-plane bending of masonry: behaviour and strength [D]. Eindhoven, the Netherlands: Eindhoven University of Technology, 1999.
    [28] Department of Homeland Security. Primer to design safe school projects in case of terrorist attacks and school shootings: FEMA 428 [M]. Washington: Federal Emergency Management Agency, 2012.
    [29] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011-2010 [S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban Rural Development of the People᾿s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People᾿s Republic of China. Code for seismic design of buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2016.
    [30] LI R W, ZHANG N, WU H, et al. Vehicular impact resistance of FRP-strengthened RC bridge pier [J]. Journal of Bridge Engineering, 2022, 27(8): 04022062. DOI: 10.1061/(ASCE)BE.1943-5592.0001901.
    [31] XU J P, WU H, MA L L, et al. Experimental and numerical study on axial capacity of FRP-rehabilitated postblast RC bridge pier [J]. Journal of Bridge Engineering, 2023, 28(10): 04023070. DOI: 10.1061/JBENF2.BEENG-6302.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  10
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12
  • 修回日期:  2024-11-03
  • 网络出版日期:  2024-11-13

目录

    /

    返回文章
    返回