Blast-resistant analysis and design of CFRP sheet strengthened masonry infilled walls
-
摘要: 为研究爆炸作用下碳纤维增强聚合物(carbon fiber reinforced polymer, CFRP)布加固砌体填充墙的抗爆性能及设计方法,首先,采用有限元软件LS-DYNA建立砌体填充墙的简化分离有限元模型及CFRP布加固抗爆分析模型,通过与已有的9组未加固和CFRP布加固砌体填充墙的野外爆炸试验结果进行对比,验证了所采用的墙体简化分离建模方法、砌体和CFRP布本构模型及参数以及相应接触算法的适用性。然后,参考标准GB
50608 —2020推荐的砌体墙CFRP抗震加固方式,通过对比分析爆炸作用下CFRP布加固原型砌体填充墙的动力行为,建议优先采用对角双向加固方式,其次是垂直双向和横向满铺加固方式,不建议采用竖向满铺和混合三向加固方式。最后,以同时满足CFRP布基本保持完整、墙体中心不发生砌块飞散以及墙体中心最大面外挠度小于墙厚为设计目标,得出典型小轿车(227 kg TNT当量)和手提包炸弹(23 kg TNT当量)在不同比例距离爆炸时,对应6~9度抗震设防等级要求的3种拉结筋布置形式(无/截断/通长拉结筋)原型墙体需要加固的比例距离范围分别为0.8~2.0 m/kg1/3和0.2~1.2 m/kg1/3,进一步给出了最优CFRP布加固层数建议。结果表明,拉结筋布置对最优加固层数的影响较小,仅影响墙体需要加固的临界爆炸比例距离。Abstract: Aiming to investigate the performance and design approach of the carbon fiber reinforced polymer (CFRP) sheet strengthened masonry infilled walls subjected to blast loads, the commercial finite element program LS-DYNA is firstly used to develop the simplified micro-finite element model of masonry infilled walls and the corresponding blast-resistant analysis model of the CFRP sheet strengthened walls. By comparing the numerical simulation results with the nine groups field explosion test results of the unstrengthening and CFRP sheet strengthened masonry infilled walls, the applicability of the present simplified micro-modeling approach, as well as the material models and parameters of masonry and CFRP sheet and the corresponding contact algorithm, is thoroughly verified. Furthermore, referring to the CFRP sheet seismic strengthening methods recommended by Chinese standard GB 50608—2020, the dynamic behaviors of the prototype masonry infilled walls strengthened with CFRP sheets under blast loads are analyzed and compared. It is recommended that the diagonal two-way strengthening method be advocated, followed by the vertical two-way and horizontal full-cover strengthening methods. In contrast, the vertical full-cover and mixed three-way strengthening methods are not recommended. Finally, to simultaneously satisfy the conditions of intact CFRP, no scattering debris and the peak central deflection than wall thickness to meet the blast-resistant design goal, the ranges of the scaled distance of the prototype masonry infilled walls with different arrangements of tie bar (non-/cut-off/full-length tie bar) that need to be strengthened under typical sedan (227 kg equivalent TNT) and briefcase bombs (23 kg equivalent TNT) specified by Federal Emergency Management Agency explode at different scaled distances are determined to be 0.8–2.0 m/kg1/3 and 0.2–1.2 m/kg1/3, respectively. The suggestions for the optimal number of CFRP sheet layers for effective blast-resistant design are further provided. The arrangement of the tie bar has little effect on the optimal number of strengthening layers, only affecting the critical scaled distance at which the wall needs to be strengthened. -
密度/(kg·m−3) 厚度/mm ν Xt/MPa Yt/MPa Sc/MPa E11/GPa E22/GPa εf,t εm,t 1 580 0.167 0.019 2 800 87 170 218 9 0.016 0.012 表 2 1 kg炸药工况下峰值反射超压的对比
Table 2. Comparisons of peak reflected overpressures (1 kg)
测点 峰值反射超压/MPa 相对误差/% 试验值[5] 模拟值 1 6.3 5.8 −7.9 4 3.3 2.7 −18.2 表 3 砌体填充墙的加固方式
Table 3. Strengthening methods of masonry infilled wall
加固方式 横向CFRP布参数 纵向CFRP布参数 斜向CFRP布参数 M L/mm W/mm N L/mm W/mm O L/mm W/mm 未加固 — — — — — — — — — 横向满铺 1 — 2 500 — — — — — — 竖向满铺 — — — 1 — 3 700 — — — 垂直双向 13 200 100 19 200 100 — — — 对角双向 — — — — — — 42 200 100 混合三向 13 200 100 — — — 20 300 100 表 4 墙体最优CFRP加固层数
Table 4. Optimal number of CFRP layers for strengthening walls
爆炸源 比例距离/(m·kg−1/3) 不同拉结筋布置墙体最优加固层数 无拉结筋布置 截断拉结筋布置 通长拉结筋布置 小轿车炸弹(227 kg) 2.0 无需加固 无需加固 无需加固 1.8 1 无需加固 无需加固 1.6 1 1 1 1.4 1 1 1 1.2 2 2 2 1.0 3 3 3 0.8 无加固必要 无加固必要 无加固必要 手提包炸弹(23 kg) 1.2 无需加固 无需加固 无需加固 1.0 1 1 1 0.8 1 1 1 0.6 2 2 2 0.4 2 2 2 0.2 无加固必要 无加固必要 无加固必要 -
[1] THOMPSON D, BROWN S, MALLONEE S, et al. Fatal and non-fatal injuries among U. S. Air Force personnel resulting from the terrorist bombing of the Khobar Towers [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2004, 57(2): 208–215. DOI: 10.1097/01.TA.0000142672.99660.80. [2] 中华人民共和国住房和城乡建设部. 纤维增强复合材料工程应用技术标准: GB 50608–2020 [S]. 北京: 中国计划出版社, 2020.Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Technical standard for fiber reinforced polymer (FRP) in construction: GB 50608–2020 [S]. Beijing: China Planning Press, 2020. [3] ACI 440 Committee. ACI 440.2R-08 Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [S]. Farmington Hills, MI: American Concrete Institute, 2008. [4] ORTON S L, CHIARITO V P, MINOR J K, et al. Experimental testing of CFRP-strengthened reinforced concrete slab elements loaded by close-in blast [J]. Journal of Structural Engineering, 2014, 140(2): 04013060. DOI: 10.1061/(ASCE)ST.1943-541X.0000821. [5] SHI Y C, XIONG W, LI Z X, et al. Experimental studies on the local damage and fragments of unreinforced masonry walls under close-in explosions [J]. International Journal of Impact Engineering, 2016, 90: 122–131. DOI: 10.1016/j.ijimpeng.2015.12.002. [6] MUSZYNSKI L C, PURCELL M R. Use of composite reinforcement to strengthen concrete and air-entrained concrete masonry walls against air blast [J]. Journal of Composites for Construction, 2003, 7(2): 98–108. DOI: 10.1061/(ASCE)1090-0268(2003)7:2(98). [7] CHEN L, FANG Q, FAN J Y, et al. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings [J]. Advances in Structural Engineering, 2014, 17(6): 817–836. DOI: 10.1260/1369-4332.17.6.817. [8] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸实验研究 [J]. 工程力学, 2019, 36(S1): 293–297. DOI: 10.6052/j.issn.1000-4750.2018.04.S062.WAN J. Blast response of CFRP-reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2019, 36(S1): 293–297. DOI: 10.6052/j.issn.1000-4750.2018.04.S062. [9] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions [J]. International Journal of Impact Engineering, 2019, 129: 66–79. DOI: 10.1016/j.ijimpeng.2019.02.013. [10] TAN K H, PATOARY M K H. Blast resistance of FRP-strengthened masonry walls. I: approximate analysis and field explosion tests [J]. Journal of Composites for Construction, 2009, 13(5): 422–430. DOI: 10.1061/(ASCE)1090-0268(2009)13:5(422). [11] 胡嘉辉, 吴昊, 方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟 [J]. 振动与冲击, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001.HU J H, WU H, FANG Q, et al. Numerical simulation of damage and dynamic response of masonry infilled wall under near zone explosion [J]. Journal of Vibration and Shock, 2021, 40(9): 1–11. DOI: 10.13465/j.cnki.jvs.2021.09.001. [12] CHEN D, WU H, FANG Q. Simplified micro-model for brick masonry walls under out-of-plane quasi-static and blast loadings [J]. International Journal of Impact Engineering, 2023, 174: 104529. DOI: 10.1016/j.ijimpeng.2023.104529. [13] HAO H, WU C Q. Numerical simulation of damage of low-rise RC frame structures with infilled masonry walls to explosive loads [J]. Australian Journal of Structural Engineering, 2006, 7(1): 13–22. DOI: 10.1080/13287982.2006.11464960. [14] ALSAYED S H, ELSANADEDY H M, AL-ZAHERI Z M, et al. Blast response of GFRP-strengthened infill masonry walls [J]. Construction and Building Materials, 2016, 115: 438–451. DOI: 10.1016/j.conbuildmat.2016.04.053. [15] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究 [J]. 工程力学, 2020, 37(S1): 82–90. DOI: 10.6052/j.issn.1000-4750.2019.04.S012.WAN J. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(S1): 82–90. DOI: 10.6052/j.issn.1000-4750.2019.04.S012. [16] LI Z, CHEN L, FANG Q, et al. Experimental and numerical study of basalt fiber reinforced polymer strip strengthened autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures, 2017, 152: 901–919. DOI: 10.1016/j.engstruct.2017.09.055. [17] 彭培, 李展, 张亚栋, 等. 燃气爆炸作用下蒸压加气混凝土砌体墙的加固性能 [J]. 爆炸与冲击, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252.PENG P, LI Z, ZHANG Y D, et al. Performance of retrofitted autoclaved aerated concrete masonry walls subjected to gas explosions [J]. Explosion and Shock Waves, 2020, 40(3): 035101. DOI: 10.11883/bzycj-2018-0252. [18] Livermore Software Technology Corporation (LSTC). LS-DYNA keyword user’s manual [M]. Livermore, CA: LSTC, 2018. [19] 中华人民共和国住房和城乡建设部. 砌体基本力学性能试验方法标准: GB/T 50129-2011 [S]. 北京: 中国计划出版社, 2012.Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Standard for test method of basic mechanics properties of masonry: GB/T 50129-2011 [S]. Beijing: China Planning Press, 2012. [20] CHANG F K, CHANG K Y. Post-failure analysis of bolted composite joints in tension or shear-out mode failure [J]. Journal of Composite Materials, 1987, 21(9): 809–833. DOI: 10.1177/002199838702100903. [21] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904. [22] KRISHNAMOORTHY S K, HÖPTNER J, KOPP G, et al. Prediction of structural response of FRP composites for conceptual design of vehicles under impact loading [C]// ALYOTECH. Proceedings of the 8th European LS-DYNA Conference. Strasburg, 2011. [23] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439–449. DOI: 10.1016/0266-3538(96)00005-X. [24] 刘桂秋. 砌体结构基本受力性能的研究 [D]. 长沙: 湖南大学, 2005.LIU G Q. The research on the basic mechanical behavior of masonry structure [D]. Changsha: Hunan University, 2005. [25] 蒋济同, 周新智. 基于分离式建模的砌体墙力学性能有限元分析参数探讨 [J]. 建筑结构, 2019, 49(S1): 640–644. DOI: 10.19701/j.jzjg.2019.S1.133.JIANG J T, ZHOU X Z. Discussion on parameters in finite element analysis of mechanical properties of masonry wall based on separation modeling [J]. Building Structure, 2019, 49(S1): 640–644. DOI: 10.19701/j.jzjg.2019.S1.133. [26] 中华人民共和国住房和城乡建设部. 砌体结构设计规范: GB 50003-2011 [S]. 北京: 中国计划出版社, 2012.Ministry of Housing and Urban Rural Development of the People᾿s Republic of China. Code for design of masonry structures: GB 50003-2011 [S]. Beijing: China Planning Press, 2012. [27] VAN DER PLUIJM R. Out-of-plane bending of masonry: behaviour and strength [D]. Eindhoven, the Netherlands: Eindhoven University of Technology, 1999. [28] Department of Homeland Security. Primer to design safe school projects in case of terrorist attacks and school shootings: FEMA 428 [M]. Washington: Federal Emergency Management Agency, 2012. [29] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011-2010 [S]. 北京: 中国建筑工业出版社, 2016.Ministry of Housing and Urban Rural Development of the People᾿s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People᾿s Republic of China. Code for seismic design of buildings: GB 50011-2010 [S]. Beijing: China Architecture & Building Press, 2016. [30] LI R W, ZHANG N, WU H, et al. Vehicular impact resistance of FRP-strengthened RC bridge pier [J]. Journal of Bridge Engineering, 2022, 27(8): 04022062. DOI: 10.1061/(ASCE)BE.1943-5592.0001901. [31] XU J P, WU H, MA L L, et al. Experimental and numerical study on axial capacity of FRP-rehabilitated postblast RC bridge pier [J]. Journal of Bridge Engineering, 2023, 28(10): 04023070. DOI: 10.1061/JBENF2.BEENG-6302. -