Damage characteristic of caisson gravity wharf subjected to underwater contact and near-field explosion
- 
					    摘要: 为探究水下接触和近场爆炸下沉箱码头的毁伤机理和荷载特性,基于沉箱码头缩尺模型试验,采用有限元数值模拟开展对比研究,分析了沉箱码头内冲击波荷载的传播、衰减规律以及沉箱码头的破坏过程和毁伤机理。研究结果表明:水下接触和近场爆炸下,沉箱码头的毁伤区域和破坏特征基本一致,码头迎爆外墙和面板为主要破坏区域,迎爆外墙呈爆坑、破口的破坏现象,面板呈现管沟连接处横向通长裂缝、纵向裂缝并掀飞的破坏现象,沉箱码头侧墙和仓格内纵横隔墙毁伤相对轻微。水下接触和近场爆炸下,沉箱码头内冲击波在仓格的隔墙和填砂界面发生反射和透射现象,码头迎爆外墙、侧墙、板均受到冲击载荷,冲击波荷载在沉箱内的衰减速度由陡至缓,沉箱码头的毁伤特征在水下爆炸冲击波阶段基本形成,毁伤形成时间略大于2倍的冲击波在沉箱码头内的传播时长。Abstract: To investigate the damage mechanism and load characteristics of caisson wharf under underwater contact and near-field explosion, a high-fidelity numerical model was conducted based on the scaled model tests of caisson wharf and verified by comparing the simulation results with the experimental data. The propagation and attenuation characteristics of shock waves inside the caisson, partition walls, and internal backfill soil were analyzed. The destruction process and typical damage mechanisms of the caisson wharf were analyzed by comparing Holmquist‒Johnson‒Cook constitutive model damage contour maps with experimental results. The results shows that the damage areas and characteristics of the caisson wharf are largely consistent under both underwater contact and near-field explosion. The primary damage areas are blast-facing wall and deck slab. The blast-facing wall exhibits cratering and breaching phenomena, while of the deck slab shows transverse full-length cracks at trench-slab connections, longitudinal cracks, and blow-off. The side walls and internal partitions of the caisson wharf sustain relatively minor damage. Shock wave within the caisson subjected to underwater contact and near-field explosions undergo reflection and transmission at the interfaces between the partitions and fillings within the compartments. The blast-facing wall and side walls of the wharf are subjected to shock loads. The transmitted compressive waves across the transverse bulkheads and blast-resistant back walls exhibited amplification compared to the incident waves, whereas attenuation was observed as the waves traversed the sand-filled compartments. Numerical simulation results revealed that the shock wave load within the caisson undergoes a decay rate that transitions from rapid to gradual. Damage characteristics of caisson wharf is primarily shaped during the underwater explosion shockwave phase. Neglecting large-scale macroscopic movements such as uplift and scattering post panel failure, the damage formation time slightly exceeds twice the shockwave propagation duration through the structure.
 - 
						
    
    
    
    
表 1 码头模型各部位的混凝土厚度和配筋
Table 1. Concrete thickness and reinforcement configuration of main members
位置 混凝土厚度/cm 配筋情况 保护层厚度/cm 仓格外墙 12 双层双向配筋,钢筋直径1.2 cm,间距18 cm 2.0 仓格内隔墙 8 双层双向配筋,钢筋直径0.8 cm,间距9 cm 1.5 沉箱底板 25 双层双向配筋,钢筋直径2.0 cm,间距18 cm 4.0 管沟底板 13 双层双向配筋,钢筋直径0.6 cm,间距15 cm 2.0 管沟外壁 12, 8 双层双向配筋,钢筋直径0.6 cm,间距15 cm 1.5 面板 6 管沟上部面板单层双向配筋,其他部位不配筋 1.5 封仓板 6 不配筋 表 2 试验工况
Table 2. Experimental schemes
工况 爆炸类型 炸药当量/kg 引爆位置 炸深/m 1 水下接触爆炸 1 紧贴沉箱中间仓格外墙中部 0.9 2 水下近场爆炸 1 正对沉箱中间仓格外墙中心距离0.5 m 0.9 表 3 混凝土HJC模型参数(
$f_{\mathrm{c}} $ =28.2 MPa)Table 3. HJC model parameters of concrete (fc=28.2 MPa)
ρ0/(kg·m−3) G/GPa $f'_c$/MPa A B C N 2440 9.24 22.26 0.79 1.6 0.007 0.61 Smax D1 D2 EFMIN T/MPa pcrush/MPa μcrush 7.0 0.034 1.0 0.0068 2.93 7.42 0.0011 Plock/GPa μlock k1/GPa k2/GPa k3/GPa ${\dot \varepsilon _0}$/μs−1 fs 0.80 0.11 85 −171 208 1E-6 0.004 表 4 混凝土HJC模型参数(
$f_{\mathrm{c}} $ =35.0 MPa)Table 4. HJC mode parameters of concrete (fc=35.0 MPa)
ρ0/(kg·m−3) G/GPa $f'_c$/MPa A B C N 2440 10.29 27.62 0.79 1.6 0.007 0.61 Smax D1 D2 EFMIN T/MPa pcrush/MPa μcrush 7.0 0.035 1.0 0.0075 3.26 9.21 0.0012 Plock/GPa μlock k1/GPa k2/GPa k3/GPa ${\dot \varepsilon _0}$/μs−1 fs 0.80 0.11 85 −171 208 1E-6 0.004 表 5 钢筋材料参数表
Table 5. Parameters of steel bar
ρ0/(kg·m−3) ν SIGY/ MPa E/GPa Gs/GPa SRC/ s−1 SRP EFS VP 7850 0.3 335 210 1.2 40 5 0.12 0 ρ0/(kg·m−3) E/MPa G/MPa SIGY/MPa PC/MPa EFS 1800 47.38 16.01 7.70 -0.70 1.2 表 7 材料参数
Table 7. Material parameters
Material ρ0/(kg·m−3) C0 C1 C2 C3 C4 C5 C6 Ea/(J·kg−1) Air 1.293 0 0 0 0 0.4 0.4 0 2.5×105 Material ρ0/(kg·m−3) c/(m·s−1) S1 S2 S3 γ0 Water 1000 1480 2.56 −1.986 1.2268 0.5 Material ρ0/(kg·m−3) A1/GPa B1/GPa ω R1 R2 D/(m·s−1) Pcj/GPa Explosive 1654 3374 3.23 0.3 4.15 0.95 6390 27 Material ρ0/(kg·m−3) Es/MPa Gs/MPa Soil 1860 22.4 8  - 
						
[1] 段卫东, 蒋培, 吴亮, 等. 爆炸力学 [M]. 武汉: 华中科技大学出版社, 2023: 90.DUAN W D, JIANG P, WU L, et al. Explosion mechanics [M]. Wuhan: Huazhong University of Science Technology Press, 2023: 90. [2] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.WEN Y B, HU L L, QIN J, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion [J]. Explosion and Shock Waves, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206. [3] 黄谢平, 孔祥振, 陈祖煜, 等. 近水面、库中、库底水下爆炸荷载作用下混凝土重力坝的破坏模式对比 [J]. 土木工程学报, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.HUANG X P, KONG X Z, CHEN Z Y, et al. Comparison of failure modes of concrete gravity dams induced by underwater explosion loads near the water free surface, the middle, and the bottom of the reservoir [J]. China Civil Engineering Journal, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206. [4] CHEN L M, LI S T, CHEN Y Q, et al. Study on damage effect of caisson wharves subjected to underwater explosion [J]. Ocean Engineering, 2023, 275: 113958. DOI: 10.1016/j.oceaneng.2023.113958. [5] ZHANG Y, ZHOU Y D, WU H. Influence of water level on RC caisson subjected to underwater explosions [J]. Ocean Engineering, 2022, 266: 113162. DOI: 10.1016/j.oceaneng.2022.113162. [6] ZHOU Y D, CHENG Y H, CHEN Z Q, et al. Dynamic behaviors of RC caisson subjected to underwater explosions [J]. Marine Structures, 2024, 94: 103568. DOI: 10.1016/j.marstruc.2023.103568. [7] 董琪, 韦灼彬, 唐廷, 等. 港池环境近水面水下爆炸特性及其毁伤效应 [J]. 高压物理学报, 2019, 33(4): 045103. DOI: 10.11858/gywlxb.20180638.DONG Q, WEI Z B, TANG T, et al. Loading characteristics and damage effect of near-surface underwater explosion in harbor basin [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045103. DOI: 10.11858/gywlxb.20180638. [8] 刘靖晗, 唐廷, 韦灼彬, 等. 水下接触爆炸下沉箱码头毁伤效应 [J]. 爆炸与冲击, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.LIU J H, TANG T, WEI Z B, et al. Damage effects of a caisson wharf subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378. [9] 刘靖晗, 唐廷, 韦灼彬, 等. 沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究 [J]. 振动与冲击, 2024, 43(12): 298–306. DOI: 10.13465/j.cnki.jvs.2024.12.033.LIU J H, TANG T, WEI Z B, et al. Cumulative damage effect of the caisson wharf induced by air and underwater explosions [J]. Journal of Vibration and Shock, 2024, 43(12): 298–306. DOI: 10.13465/j.cnki.jvs.2024.12.033. [10] 黄谢平, 孔祥振, 陈祖煜, 等. 水下爆炸对重力坝的毁伤效应及最优爆距 [J]. 爆炸与冲击, 2023, 43(5): 052202. DOI: 10.11883/bzycj-2022-0113.HUANG X P, KONG X Z, CHEN Z Y, et al. Damage effects of underwater explosions on gravity dams and optimal standoff distances [J]. Explosion and Shock Waves, 2023, 43(5): 052202. DOI: 10.11883/bzycj-2022-0113. [11] 王高辉, 高政, 卢文波, 等. 考虑初始应力的混凝土重力坝水下爆炸毁伤特性研究 [J]. 振动与冲击, 2022, 41(11): 133–140. DOI: 10.13465/j.cnki.jvs.2022.11.017.WANG G H, GAO Z, LU W B, et al. Damage characteristics of underwater explosion of concrete gravity dam considering initial stress [J]. Journal of Vibration and Shock, 2022, 41(11): 133–140. DOI: 10.13465/j.cnki.jvs.2022.11.017. [12] CHEN L M, LI S T, CHEN Y Q, et al. Study on the dynamic characteristics of pile wharves subjected to underwater explosion [J]. Ocean Engineering, 2024, 291: 116406. DOI: 10.1016/j.oceaneng.2023.116406. [13] ZHUANG T S, WANG M Y, WU J, et al. Experimental investigation on dynamic response and damage models of circular RC columns subjected to underwater explosions [J]. Defence Technology, 2020, 16(4): 856–875. DOI: 10.1016/j.dt.2019.10.015. [14] LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008. [15] 闫秋实, 常松. 水下爆炸三维数值模拟特征参量敏感性分析 [J]. 北京工业大学学报, 2023, 49(10): 1099–1108. DOI: 10.11936/bjutxb2022090043.YAN Q S, CHANG S. Underwater explosion 3D numerical simulation characteristic parameter sensitivity analysis [J]. Journal of Beijing University of Technology, 2023, 49(10): 1099–1108. DOI: 10.11936/bjutxb2022090043. [16] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. DOI: 10.1115/1.4004326. [17] 张凤国, 李恩征. 大应变、高应变率及高压强条件下混凝土的计算模型 [J]. 爆炸与冲击, 2002, 22(3): 198–202. DOI: 10.11883/1001-1455(2002)03-0198-5.ZHANG F G, LI E Z. A computational model for concrete subjected to large strains, high strain rates, and high pressures [J]. Explosion and Shock Waves, 2002, 22(3): 198–202. DOI: 10.11883/1001-1455(2002)03-0198-5. [18] HALLQUIST J O. LS-DYNA® keyword user’s manual: version 971 [R]. Livermore: Livermore Software Technology Corporation, 2013. [19] 孙其然, 李芮宇, 赵亚运, 等. HJC模型模拟钢筋混凝土侵彻实验的参数研究 [J]. 工程力学, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094.SUN Q R, LI R Y, ZHAO Y Y, et al. Investigation on parameters of HJC model applied to simulate perforation experiments of reinforced concrete [J]. Engineering Mechanics, 2016, 33(8): 248–256. DOI: 10.6052/j.issn.1000-4750.2014.12.1094. [20] 姜华, 王君杰. 弹体侵彻混凝土数值模拟失效指标研究 [J]. 振动与冲击, 2009, 28(8): 30–34,197. DOI: 10.3969/j.issn.1000-3835.2009.08.007.JIANG H, WANG J J. Investigation on failure index of concrete in the projectile perforation simulation [J]. Journal of Vibration and Shock, 2009, 28(8): 30–34,197. DOI: 10.3969/j.issn.1000-3835.2009.08.007. [21] 顾文彬, 叶序双, 詹发民, 等. 球形装药半无限土介质中爆炸动力学分析 [J]. 工程爆破, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.GU W B, YE X S, ZHAN F M, et al. Dynamic analysis on spherical charges exploding in semi-infinite soil medium [J]. Engineering Blasting, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002. [22] 高洪泉, 卢芳云, 赵宏伟. 不同土壤介质中爆炸的数值模拟 [C]//第六届全国工程结构安全防护学术会议论文集. 洛阳: 中国力学学会爆炸力学专业委员会, 中国土木工程学会防护工程分会, 中国岩石力学与工程学会岩石动力学专业委员会, 2007: 91–96. [23] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580.DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. DOI: 10.11858/gywlxb.20170580. [24] 甘露, 陈力, 宗周红, 等. 近距离爆炸比例爆距的界定标准及荷载模型 [J]. 爆炸与冲击, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.GAN L, CHEN L, ZONG Z H, et al. Definition of scaled distance of close-in explosion and blast load calculation model [J]. Explosion and Shock Waves, 2021, 41(6): 064902. DOI: 10.11883/bzycj-2020-0194.  - 
						
						
						
						
						
					 

    						
	   			
							
							
下载: 
				
							
							
							
							
							
							
							
							
							
							
							
							
