[1] |
彭亚晶, 叶玉清. 含能材料起爆过程“热点”理论研究进展 [J]. 化学通报, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.PENG Y J, YE Y Q. Research progress of ‘hot-spot’ theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.
|
[2] |
MADER C L. Numerical modeling of detonations [M]. Berkeley: University of California Press, 1979.
|
[3] |
LAUER E, HU X Y, HICKEL S, et al. Numerical investigation of collapsing cavity arrays [J]. Physics of Fluids, 2012, 24(5): 052104. DOI: 10.1063/1.4719142.
|
[4] |
OZLEM M, SCHWENDEMAN D W, KAPILA A K, et al. A numerical study of shock-induced cavity collapse [J]. Shock Waves, 2012, 22(2): 89–117. DOI: 10.1007/s00193-011-0352-9.
|
[5] |
KAPILA A K, SCHWENDEMAN D W, GAMBINO J R, et al. A numerical study of the dynamics of detonation initiated by cavity collapse [J]. Shock Waves, 2015, 25(6): 545–572. DOI: 10.1007/s00193-015-0597-9.
|
[6] |
KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void–void interactions [J]. Shock Waves, 2013, 23(6): 537–558. DOI: 10.1007/s00193-013-0439-6.
|
[7] |
MICHAEL L, NIKIFORAKIS N. A hybrid formulation for the numerical simulation of condensed phase explosives [J]. Journal of Computational Physics, 2016, 316: 193–217. DOI: 10.1016/j.jcp.2016.04.017.
|
[8] |
XIANG G M, WANG B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity [J]. Journal of Fluid Mechanics, 2017, 825: 825–852. DOI: 10.1017/jfm.2017.403.
|
[9] |
BETNEY M R, ANDERSON P A, DOYLE H, et al. Numerical and experimental study of shock-driven cavity collapse [C]//9th International Symposium on Cavitation (CAV2015). Lausanne: IOP Publishing, 2015: 012011. DOI: 10.1088/1742-6596/656/1/012011.
|
[10] |
SUN J, YANG P F, MENG B Q, et al. Effects of micrometer-scale cavities on the shock-to-detonation transition in a heterogeneous LX-17 energetic material [J]. Physics of Fluids, 2023, 35(12): 126117. DOI: 10.1063/5.0174851.
|
[11] |
于明. 固体炸药爆轰与惰性介质相互作用的一种扩散界面模型 [J]. 爆炸与冲击, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.YU M. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media [J]. Explosion and Shock Waves, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.
|
[12] |
SCHMIDMAYER K, BRYNGELSON S H, COLONIUS T. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics [J]. Journal of Computational Physics, 2020, 402: 109080. DOI: 10.1016/J.JCP.2019.109080.
|
[13] |
XIAO M, NI G X, WANG C, et al. Front capturing by level set method for the reactive Euler equations [J]. International Journal for Numerical Methods in Fluids, 2021, 93(8): 2723–2743. DOI: 10.1002/fld.4995.
|
[14] |
KLOPSCH R, GARAN N, BACH E, et al. Parametric influence on rotating detonation combustion: insights from fast reactive Euler simulations [J]. AIAA Journal, 2024, 62(1): 127–139. DOI: 10.2514/1.J063193.
|
[15] |
SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. DOI: 10.1006/jcph.1998.5930.
|
[16] |
SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state [J]. Journal of Computational Physics, 1999, 156(1): 43–88. DOI: 10.1006/jcph.1999.6349.
|
[17] |
SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie–Grüneisen equation of state [J]. Journal of Computational Physics, 2001, 171(2): 678–707. DOI: 10.1006/jcph.2001.6801.
|
[18] |
ZHANG F, CHENG J. A bound-preserving and positivity-preserving high-order arbitrary Lagrangian-Eulerian discontinuous Galerkin method for compressible multi-medium flows [J]. SIAM Journal on Scientific Computing, 2024, 46(3): B254–B279. DOI: 10.1137/23M1588810.
|
[19] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201–225. DOI: 10.1016/0021-9991(81)90145-5.
|
[20] |
MULBAH C, KANG C, MAO N, et al. A review of VOF methods for simulating bubble dynamics [J]. Progress in Nuclear Energy, 2022, 154: 104478. DOI: 10.1016/j.pnucene.2022.104478.
|
[21] |
TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
|
[22] |
GIBOU F, FEDKIW R, OSHER S. A review of level-set methods and some recent applications [J]. Journal of Computational Physics, 2018, 353: 82–109. DOI: 10.1016/j.jcp.2017.10.006.
|
[23] |
姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
|
[24] |
刘铁钢, 许亮. 模拟多介质界面问题的虚拟流体方法综述 [J]. 气体物理, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-1642.0746.LIU T G, XU L. A review of ghost fluid methods for multi-medium interface simulation [J]. Physics of Gases, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-1642.0746.
|
[25] |
LIU T G, KHOO B C, YEO K S. Ghost fluid method for strong shock impacting on material interface [J]. Journal of Computational Physics, 2003, 190(2): 651–681. DOI: 10.1016/S0021-9991(03)00301-2.
|
[26] |
WANG C W, LIU T G, KHOO B C. A real ghost fluid method for the simulation of multimedium compressible flow [J]. Siam Journal on Scientific Computing, 2006, 28(1): 278–302. DOI: 10.1137/030601363.
|
[27] |
XU L, FENG C L, LIU T G. Practical techniques in ghost fluid method for compressible multi-medium flows [J]. Communications in Computational Physics, 2016, 20(3): 619–659. DOI: 10.4208/cicp.190315.290316a.
|
[28] |
HUO Z X, JIA Z P. A GRP-based tangential effects preserving, high resolution and efficient ghost fluid method for the simulation of two-dimensional multi-medium compressible flows [J]. Computers and Fluids, 2024, 276: 106261. DOI: 10.1016/j.compfluid.2024.106261.
|
[29] |
XU L, YANG W B, LIU T G. An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions [J]. Journal of Computational Physics, 2022, 448: 110707. DOI: 10.1016/j.jcp.2021.110707.
|
[30] |
ZHAO Z T, RONG J L, ZHANG S X. A numerical study of underwater explosions based on the ghost fluid method [J]. Ocean Engineering, 2022, 247: 109796. DOI: 10.1016/j.oceaneng.2021.109796.
|
[31] |
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
|
[32] |
FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
|
[33] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. 3rd ed. Heidelberg: Springer Science & Business Media, 2009.
|
[34] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
|
[35] |
WANG C, LIU X Q. High resolution numerical simulation of detonation diffraction of condensed explosives [J]. International Journal of Computational Methods, 2015, 12(2): 1550005. DOI: 10.1142/S021987621550005X.
|
[36] |
TURLEY W D, LA LONE B M, MANCE J G, et al. Experimental observations of shock-wave-induced bubble collapse and hot-spot formation in nitromethane liquid explosive [J]. Journal of Applied Physics, 2021, 129(14): 145102. DOI: 10.1063/5.0039414.
|