• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟

肖敏 王成 杨同会

肖敏, 王成, 杨同会. 含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0333
引用本文: 肖敏, 王成, 杨同会. 含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0333
XIAO Min, WANG Cheng, YANG Tonghui. Numerical simulation for shock to detonation process of explosive nitromethane containing cavities[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0333
Citation: XIAO Min, WANG Cheng, YANG Tonghui. Numerical simulation for shock to detonation process of explosive nitromethane containing cavities[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0333

含空穴炸药硝基甲烷冲击转爆轰过程的数值模拟

doi: 10.11883/bzycj-2024-0333
基金项目: 国家自然科学基金(12102052,12221002);中国石油大学(北京)科研基金(2462023YJRC008);北京应用物理与计算数学研究所计算物理重点实验室基金(6142A05QN23005)
详细信息
    作者简介:

    肖 敏(1992- ),女,博士,讲师,xiaomin@cup.edu.cn

    通讯作者:

    王 成(1972- ),男,博士,教授,wangcheng@bit.edu.cn

  • 中图分类号: O381

Numerical simulation for shock to detonation process of explosive nitromethane containing cavities

  • 摘要: 为研究冲击波加载下含空穴液体炸药硝基甲烷的起爆过程,提出了一种基于水平集方法的欧拉多介质计算方法。采用反应欧拉方程组作为控制方程,通过水平集方法追踪化学反应混合物与空穴之间的界面。为提高计算方法的鲁棒性,在界面附近的计算单元内应用修正的虚拟流体方法,将多介质问题转化成单介质问题。对于这两种流体,均采用高阶加权本质无振荡(weighted essentially non-oscillatory, WENO)有限差分方法计算单元边界的数值通量,使得模拟结果具有高可靠性。由于Jones-Wilkins-Lee(JWL)状态方程与理想气体状态方程形式差别很大,爆轰产物的质量分数又直接影响了化学反应区内守恒变量和原始变量的相互转化过程,难以给出爆炸混合物状态方程的显式表达形式,因此发展了一种能够解决以上难题的虚拟流体状态预测方法。通过求解涉及化学反应的复杂多介质黎曼问题,获得界面两侧虚拟流体的变量状态。对不同强度冲击波加载下硝基甲烷与空穴的相互作用问题开展了数值模拟,数值结果可以说明:提出的计算方法能够捕捉到空穴压缩、塌陷、闭合以及消失后的流体动力学全过程。
  • 图  1  近似黎曼解结构示意图

    Figure  1.  Schematic diagram of approximate Riemann solution structure

    图  2  4 GPa压力下不同时刻的密度分布

    Figure  2.  Density distributions under 4 GPa pressure at different times

    图  3  4 GPa压力下不同时刻的压力分布

    Figure  3.  Pressure distributions under 4 GPa pressure at different times

    图  4  4 GPa压力下不同时刻的密度分布

    Figure  4.  Density distributions under 4 GPa pressure at different times

    图  5  4 GPa压力下不同时刻的压力分布

    Figure  5.  Pressure distributions under 4 GPa pressure at different times

    图  6  4 GPa压力下不同时刻的爆轰产物质量分数分布

    Figure  6.  Detonation product mass fraction distributions under 4 GPa pressure at different times

    图  7  4 Gpa压力下0 μs、0.17 μs、0.37 μs时的中轴线密度、压力和速度分布

    Figure  7.  Density, pressure and velocity distributions on the central axis under 4 GPa pressure at 0 μs, 0.17 μs, 0.37 μs

    图  8  4 Gpa压力下0.74 μs、1.35 μs、2.2 μs时的中轴线密度、压力和速度分布

    Figure  8.  Density, pressure and velocity distributions on the central axis under 4 GPa pressure at 0.74 μs, 1.35 μs, 2.2 μs

    图  9  不同网格尺寸下0.37 μs时的密度分布

    Figure  9.  Density distributions with different mesh sizes at 0.37 μs

    图  10  0.37 μs时的中轴线密度和压力分布

    Figure  10.  Density and pressure distributions on the central axis at 0.37 μs

    图  11  6 GPa压力下不同时刻的密度分布

    Figure  11.  Density distributions under 6 GPa pressure at different times

    图  12  6 GPa压力下不同时刻的压力分布

    Figure  12.  Pressure distributions under 6 GPa pressure at different times

    图  13  6 GPa压力下不同时刻的密度分布

    Figure  13.  Density distributions under 6 GPa pressure at different times

    图  14  6 GPa压力下不同时刻的压力分布

    Figure  14.  Pressure distributions under 6 GPa pressure at different times

    图  15  6 GPa压力下不同时刻的爆轰产物质量分数分布

    Figure  15.  Product mass fraction distributions under 6 GPa pressure at different times

    图  16  6 GPa压力下0 μs、0.15 μs、0.3 μs时的中轴线密度、压力和速度分布

    Figure  16.  Density, pressure and velocity distributions on the central axis under 6 GPa pressure at 0 μs, 0.15 μs, 0.3 μs

    图  17  6 GPa压力下0.7 μs、1.11 μs、1.94 μs、2.49 μs时的中轴线密度、压力和速度分布

    Figure  17.  Density, pressure and velocity distributions on the central axis under 6 GPa pressure at 0.7 μs, 1.11 μs, 1.94 μs, 2.49 μs

    图  18  8 GPa压力下不同时刻的密度分布

    Figure  18.  Density distributions under 8 GPa pressure at different times

    图  19  8 GPa压力下不同时刻的压力分布

    Figure  19.  Pressure distributions under 8 GPa pressure at different times

    图  20  8 GPa压力下不同时刻的密度分布

    Figure  20.  Density distributions under 8 GPa pressure at different times

    图  21  8 GPa压力下不同时刻的压力分布

    Figure  21.  Pressure distributions under 8 GPa pressure at different times

    图  22  8 GPa压力下不同时刻的爆轰产物质量分数分布

    Figure  22.  Detonation product mass fraction distributions under 8 GPa pressure at different times

    图  23  8 GPa压力下0 μs、0.14 μs、0.27 μs时的中轴线密度、压力和速度分布

    Figure  23.  Density, pressure and velocity distributions on the central axis under 8 GPa pressure at 0 μs, 0.14 μs, 0.27 μs

    图  24  8 GPa压力下0.58 μs、0.78 μs、0.9 μs、1.5 μs时的中轴线密度、压力和速度分布

    Figure  24.  Density, pressure and velocity distributions on the central axis under 8 GPa pressure at 0.58 μs, 0.78 μs, 0.9 μs, 1.5 μs

  • [1] 彭亚晶, 叶玉清. 含能材料起爆过程“热点”理论研究进展 [J]. 化学通报, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.

    PENG Y J, YE Y Q. Research progress of ‘hot-spot’ theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693–701. DOI: 10.14159/j.cnki.0441-3776.2015.08.004.
    [2] MADER C L. Numerical modeling of detonations [M]. Berkeley: University of California Press, 1979.
    [3] LAUER E, HU X Y, HICKEL S, et al. Numerical investigation of collapsing cavity arrays [J]. Physics of Fluids, 2012, 24(5): 052104. DOI: 10.1063/1.4719142.
    [4] OZLEM M, SCHWENDEMAN D W, KAPILA A K, et al. A numerical study of shock-induced cavity collapse [J]. Shock Waves, 2012, 22(2): 89–117. DOI: 10.1007/s00193-011-0352-9.
    [5] KAPILA A K, SCHWENDEMAN D W, GAMBINO J R, et al. A numerical study of the dynamics of detonation initiated by cavity collapse [J]. Shock Waves, 2015, 25(6): 545–572. DOI: 10.1007/s00193-015-0597-9.
    [6] KAPAHI A, UDAYKUMAR H S. Dynamics of void collapse in shocked energetic materials: physics of void–void interactions [J]. Shock Waves, 2013, 23(6): 537–558. DOI: 10.1007/s00193-013-0439-6.
    [7] MICHAEL L, NIKIFORAKIS N. A hybrid formulation for the numerical simulation of condensed phase explosives [J]. Journal of Computational Physics, 2016, 316: 193–217. DOI: 10.1016/j.jcp.2016.04.017.
    [8] XIANG G M, WANG B. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity [J]. Journal of Fluid Mechanics, 2017, 825: 825–852. DOI: 10.1017/jfm.2017.403.
    [9] BETNEY M R, ANDERSON P A, DOYLE H, et al. Numerical and experimental study of shock-driven cavity collapse [C]//9th International Symposium on Cavitation (CAV2015). Lausanne: IOP Publishing, 2015: 012011. DOI: 10.1088/1742-6596/656/1/012011.
    [10] SUN J, YANG P F, MENG B Q, et al. Effects of micrometer-scale cavities on the shock-to-detonation transition in a heterogeneous LX-17 energetic material [J]. Physics of Fluids, 2023, 35(12): 126117. DOI: 10.1063/5.0174851.
    [11] 于明. 固体炸药爆轰与惰性介质相互作用的一种扩散界面模型 [J]. 爆炸与冲击, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.

    YU M. An improved diffuse interface model for the numerical simulation of interaction between solid explosive detonation and inert media [J]. Explosion and Shock Waves, 2020, 40(10): 104202. DOI: 10.11883/bzycj-2019-0435.
    [12] SCHMIDMAYER K, BRYNGELSON S H, COLONIUS T. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics [J]. Journal of Computational Physics, 2020, 402: 109080. DOI: 10.1016/J.JCP.2019.109080.
    [13] XIAO M, NI G X, WANG C, et al. Front capturing by level set method for the reactive Euler equations [J]. International Journal for Numerical Methods in Fluids, 2021, 93(8): 2723–2743. DOI: 10.1002/fld.4995.
    [14] KLOPSCH R, GARAN N, BACH E, et al. Parametric influence on rotating detonation combustion: insights from fast reactive Euler simulations [J]. AIAA Journal, 2024, 62(1): 127–139. DOI: 10.2514/1.J063193.
    [15] SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. DOI: 10.1006/jcph.1998.5930.
    [16] SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state [J]. Journal of Computational Physics, 1999, 156(1): 43–88. DOI: 10.1006/jcph.1999.6349.
    [17] SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with Mie–Grüneisen equation of state [J]. Journal of Computational Physics, 2001, 171(2): 678–707. DOI: 10.1006/jcph.2001.6801.
    [18] ZHANG F, CHENG J. A bound-preserving and positivity-preserving high-order arbitrary Lagrangian-Eulerian discontinuous Galerkin method for compressible multi-medium flows [J]. SIAM Journal on Scientific Computing, 2024, 46(3): B254–B279. DOI: 10.1137/23M1588810.
    [19] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201–225. DOI: 10.1016/0021-9991(81)90145-5.
    [20] MULBAH C, KANG C, MAO N, et al. A review of VOF methods for simulating bubble dynamics [J]. Progress in Nuclear Energy, 2022, 154: 104478. DOI: 10.1016/j.pnucene.2022.104478.
    [21] TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow [J]. Journal of Computational Physics, 2001, 169(2): 708–759. DOI: 10.1006/jcph.2001.6726.
    [22] GIBOU F, FEDKIW R, OSHER S. A review of level-set methods and some recent applications [J]. Journal of Computational Physics, 2018, 353: 82–109. DOI: 10.1016/j.jcp.2017.10.006.
    [23] 姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.

    YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
    [24] 刘铁钢, 许亮. 模拟多介质界面问题的虚拟流体方法综述 [J]. 气体物理, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-1642.0746.

    LIU T G, XU L. A review of ghost fluid methods for multi-medium interface simulation [J]. Physics of Gases, 2019, 4(2): 1–16. DOI: 10.19527/j.cnki.2096-1642.0746.
    [25] LIU T G, KHOO B C, YEO K S. Ghost fluid method for strong shock impacting on material interface [J]. Journal of Computational Physics, 2003, 190(2): 651–681. DOI: 10.1016/S0021-9991(03)00301-2.
    [26] WANG C W, LIU T G, KHOO B C. A real ghost fluid method for the simulation of multimedium compressible flow [J]. Siam Journal on Scientific Computing, 2006, 28(1): 278–302. DOI: 10.1137/030601363.
    [27] XU L, FENG C L, LIU T G. Practical techniques in ghost fluid method for compressible multi-medium flows [J]. Communications in Computational Physics, 2016, 20(3): 619–659. DOI: 10.4208/cicp.190315.290316a.
    [28] HUO Z X, JIA Z P. A GRP-based tangential effects preserving, high resolution and efficient ghost fluid method for the simulation of two-dimensional multi-medium compressible flows [J]. Computers and Fluids, 2024, 276: 106261. DOI: 10.1016/j.compfluid.2024.106261.
    [29] XU L, YANG W B, LIU T G. An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions [J]. Journal of Computational Physics, 2022, 448: 110707. DOI: 10.1016/j.jcp.2021.110707.
    [30] ZHAO Z T, RONG J L, ZHANG S X. A numerical study of underwater explosions based on the ghost fluid method [J]. Ocean Engineering, 2022, 247: 109796. DOI: 10.1016/j.oceaneng.2021.109796.
    [31] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988, 79(1): 12–49. DOI: 10.1016/0021-9991(88)90002-2.
    [32] FEDKIW R P, ASLAM T, MERRIMAN B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) [J]. Journal of Computational Physics, 1999, 152(2): 457–492. DOI: 10.1006/jcph.1999.6236.
    [33] TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. 3rd ed. Heidelberg: Springer Science & Business Media, 2009.
    [34] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes [J]. Journal of Computational Physics, 1996, 126(1): 202–228. DOI: 10.1006/jcph.1996.0130.
    [35] WANG C, LIU X Q. High resolution numerical simulation of detonation diffraction of condensed explosives [J]. International Journal of Computational Methods, 2015, 12(2): 1550005. DOI: 10.1142/S021987621550005X.
    [36] TURLEY W D, LA LONE B M, MANCE J G, et al. Experimental observations of shock-wave-induced bubble collapse and hot-spot formation in nitromethane liquid explosive [J]. Journal of Applied Physics, 2021, 129(14): 145102. DOI: 10.1063/5.0039414.
  • 加载中
图(24)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  23
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2025-04-10
  • 网络出版日期:  2025-04-16

目录

    /

    返回文章
    返回