Characteristics of fracture propagation and permeability response of sandstone under cyclic impact effect
-
摘要: 为了研究循环冲击作用下砂岩型铀矿的裂缝及渗透率特征,通过霍普金森杆实验系统对砂岩试样进行了循环冲击,分别在试样冲击3次、6次和9次后,测得砂岩试样的动态力学特性。随后,对冲击后的砂岩试样进行CT扫描,并对扫描得到的裂隙进行了三维重构,从而测得孔隙裂隙参数的变化,并对冲击后试样内部结构及损伤影响进行分析。进一步,利用微观渗流模拟对试样进行渗透性分析,获得试样的模拟渗透率变化特征。最后,进行了冲击后试样的渗透率室内试验,测得实际渗透率的变化情况。结果显示:循环冲击使得试样产生累积损伤,降低了其动态力学性能,随着冲击次数的增加,试样内能量循环蓄积-释放,导致裂缝“扩展-压实-再扩展-再压实”;循环冲击过程中,试样内部小而孤立的裂缝逐步形成大且相互贯通的裂缝,而中裂缝同时存在错断、连通的双重效应,呈现非线性变化特征;循环冲击作用使得试样内产生更多复杂裂缝,导致流体渗流通道更多、渗流规模更大;循环冲击3次时,试样形成单一裂缝,渗透率提升340.91%~380.00%;循环冲击6次时,裂缝初步连通,渗透率提升
1468.18 %~2893.33 %;循环冲击九次时,形成连通裂缝网络,渗透率提升4718.18 %~9380.00 %。研究表明,循环冲击作用能够显著提高砂岩的渗透率,裂缝扩展和连通是渗透率提升的关键驱动因素。Abstract: To investigate the fracture and permeability characteristics of sandstone-type uranium ore under cyclic impact, a Hopkinson bar experimental system was used to load sandstone samples by cyclic impacts. The dynamic mechanical properties of the sandstone samples were measured after 3, 6 and 9 impacts. Subsequently, the impacted sandstone samples were subjected to CT scanning, and the crack images obtained from the scans were reconstructed in three-dimensions to measure the changes in pore and fracture parameters. The internal structures and damages in the impacted samples were then analyzed. Furthermore, a microscopic seepage simulation was performed to analyze the permeability of the samples, revealing the changes in the simulated permeability. Finally, permeability tests were conducted on the impacted samples to measure the variations in the actual permeability. Results show that cyclic impacts cause cumulative damage in the specimens, reducing their dynamic mechanical properties. As the number of impacts increases, energy in the specimens accumulates and releases cyclically. This cyclic accumulation and release of energy lead to a process of crack "expansion, compaction, re-expansion, re-compaction". During the cyclic impact process, small and isolated cracks inside the specimen gradually develop into larger, interconnected fractures. Simultaneously, medium-sized cracks exhibit dual effects of faulting and connectivity, presenting nonlinear characteristics. Cyclic impacts induce more complex fractures in the specimens, leading to an increased number of fluid seepage pathways and a larger scale of seepage. When subjected to three cycles of impact, the sample forms a single crack, resulting in a permeability increase of 340.91%−380.00%. After six cycles of impact, the cracks begin to connect, leading to a permeability increase of1468.18 %−2893.33 %. With nine cycles of impact, a connected network of cracks forms, resulting in a permeability increase of4718.18 %−9380.00 %. The cyclic impact significantly enhances the permeability of sandstone, with crack propagation and connectivity being the key driving factors for the increase in permeability.-
Key words:
- sandstone-type uranium mines /
- cyclic shock /
- SHPB /
- CT scan /
- seepage simulation
-
表 1 试样基本参数
Table 1. Basic parameters of samples
密度/
(kg·m−3)纵波波速/
(m·s−1)抗压强度/
MPa弹性模量/
GPa泊松比 2.362 2395 54.19 7.50 0.23 表 2 循环冲击下试样实测和数值模拟渗透率
Table 2. Actual measurement and numerical simulation of permeability of specimens under cyclic impact
方法 渗透率/mD 无冲击 冲击3次 冲击6次 冲击9次 实测值 0.15 0.72 4.49 14.22 数值模拟值 0.88 3.88 13.80 42.40 -
[1] 王伟豪, 刘金辉, 阳奕汉, 等. 地浸采铀过程中含矿层渗透性演化的示踪试验 [J]. 有色金属(冶炼部分), 2024(2): 72–82. DOI: 10.3969/j.issn.1007-7545.2024.02.011.WANG W H, LIU J H, YANG Y H, et al. Tracer test of permeability evolution of ore-bearing layer during in-situ leaching of uranium [J]. Nonferrous Metals (Extractive Metallurgy), 2024(2): 72–82. DOI: 10.3969/j.issn.1007-7545.2024.02.011. [2] 牛庆合, 何佳彬, 王伟, 等. 基于渗流-化学-应力多场耦合的砂岩型铀矿CO2+O2地浸开采的数值模拟 [J]. 有色金属(冶炼部分), 2023(6): 144–152. DOI: 10.3969/j.issn.1007-7574.2023.06.016.NIU Q H, HE J B, WANG W, et al. Numerical simulation of CO2+O2 in-situ leaching of sandstone type uranium deposit based on multifield coupling of seepage-chemistry-stress [J]. Nonferrous Metals (Extractive Metallurgy), 2023(6): 144–152. DOI: 10.3969/j.issn.1007-7574.2023.06.016. [3] 陶峰, 张传飞, 冯国平, 等. 某砂岩型铀矿CO2+O2地浸采铀试验 [J]. 有色金属(冶炼部分), 2022(6): 56–61. DOI: 10.3969/j.issn.1007-7545.2022.06.010.TAO F, ZHANG C F, FENG G P, et al. CO2+O2 in-situ leaching of uranium from a sandstone type uranium deposit [J]. Nonferrous Metals (Extractive Metallurgy), 2022(6): 56–61. DOI: 10.3969/j.issn.1007-7545.2022.06.010. [4] 苏学斌. 第三代铀采冶技术有望成为“走出去”的新生力量 [J]. 中国核工业, 2015(11): 28–29. [5] 王刚, 陈昊, 陈雪畅, 等. 基于CT三维重构煤体变开度裂隙渗流特性研究 [J]. 中国矿业大学学报, 2024, 53(1): 59–67. DOI: 10.13247/j.cnki.jcumt.20230128.WANG G, CHEN H, CHEN X C, et al. Study on seepage characteristics of coal fissures with variable apertures based on CT 3D reconstruction [J]. Journal of China University of Mining & Technology, 2024, 53(1): 59–67. DOI: 10.13247/j.cnki.jcumt.20230128. [6] ZHOU X Y, WANG W, NIU Q H, et al. Geochemical reactions altering the mineralogical and multiscale pore characteristics of uranium-bearing reservoirs during CO2 + O2 in situ leaching [J]. Frontiers in Earth Science, 2023, 10: 1094880. DOI: 10.3389/feart.2022.1094880. [7] 王伟, 李小春. 低渗透砂岩型铀矿床增渗方法及其可行性研究 [J]. 岩土力学, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002.WANG W, LI X C. Study of enhanced permeability methods and their feasibility in low-permeability sandstone-type uranium deposit [J]. Rock and Soil Mechanics, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002. [8] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. DOI: 10.13722/j.cnki.jrme.2017.0539.LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. DOI: 10.13722/j.cnki.jrme.2017.0539. [9] 吕晓聪, 许金余, 葛洪海, 等. 围压对砂岩动态冲击力学性能的影响 [J]. 岩石力学与工程学报, 2010, 29(1): 193–201.LV X C, XU J Y, GE H H, et al. Effects of confining pressure on mechanical behaviors of sandstone under dynamic impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 193–201. [10] 刘少赫, 许金余, 王鹏, 等. 围压条件下砂岩循环冲击损伤的力学与超声分析 [J]. 振动与冲击, 2015, 34(1): 190–194. DOI: 10.13465/j.cnki.jvs.2015.01.033.LIU S H, XU J Y, WANG P, et al. Mechanical and ultrasonic analysis on damage of sandstone under cyclical impact loading with confining pressure [J]. Journal of Vibration and Shock, 2015, 34(1): 190–194. DOI: 10.13465/j.cnki.jvs.2015.01.033. [11] 王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性 [J]. 爆炸与冲击, 2024, 44(4): 043104. DOI: 10.11883/bzycj-2023-0243.WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading [J]. Explosion and Shock Waves, 2024, 44(4): 043104. DOI: 10.11883/bzycj-2023-0243. [12] 许金余, 吕晓聪, 张军, 等. 循环冲击作用下围压对斜长角闪岩动态特性的影响研究 [J]. 振动与冲击, 2010, 29(8): 60–63, 72. DOI: 10.13465/j.cnki.jvs.2010.08.005.XU J Y, LV X C, ZHANG J, et al. Research on dynamic mechanical performance of amphibolite under cyclical impact loadings at different confining pressures [J]. Journal of Vibration and Shock, 2010, 29(8): 60–63, 72. DOI: 10.13465/j.cnki.jvs.2010.08.005. [13] 于洋, 徐倩, 刁心宏, 等. 循环冲击对围压作用下砂岩特征的影响 [J]. 华中科技大学学报(自然科学版), 2019, 47(6): 127–132. DOI: 10.13245/j.hust.190623.YU Y, XU Q, DIAO X H, et al. Effect of cyclic impact on sandstone characteristics under confining pressures [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(6): 127–132. DOI: 10.13245/j.hust.190623. [14] 陈海亮. 含水砂岩循环冲击载荷下力学特性与损伤演化规律研究 [D]. 徐州: 中国矿业大学, 2023. DOI: 10.27623/d.cnki.gzkyu.2023.001708.CHEN H L. Study on mechanical characteristics and damage evolution of water-bearing sandstone under cyclic impact loading [D]. Xuzhou, Jiangsu, China: China University of Mining and Technology, 2023. DOI: 10.27623/d.cnki.gzkyu.2023.001708. [15] 张蓉蓉, 沈永辉, 马冬冬, 等. 循环冲击作用下冻融红砂岩动力学特性与损伤机理 [J]. 爆炸与冲击, 2024, 44(8): 081443. DOI: 10.11883/bzycj-2023-0449.ZHANG R R, SHEN Y H, MA D D, et al. Dynamic characteristics and damage mechanism of freeze-thaw treated red sandstone under cyclic impact [J]. Explosion and Shock Waves, 2024, 44(8): 081443. DOI: 10.11883/bzycj-2023-0449. [16] ZHOU T, HAN Z Y, LI D Y, et al. Experimental study of the mechanical and fracture behavior of flawed sandstone subjected to coupled static-repetitive impact loading [J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103161. DOI: 10.1016/j.tafmec.2021.103161. [17] 张明涛. 基于SHPB试验的灰砂岩动态破坏过程及应变-损伤演化规律研究 [D]. 石家庄: 石家庄铁道大学, 2020. DOI: 10.27334/d.cnki.gstdy.2020.000427.ZHANG M T. Study on dynamic failure process and strain-damage law of gray sandstone based on SHPB test [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. DOI: 10.27334/d.cnki.gstdy.2020.000427. [18] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461. [19] 褚夫蛟, 刘敦文, 陶明, 等. 基于SHPB的不同含水状态砂岩动态响应 [J]. 工程科学学报, 2017, 39(12): 1783–1790. DOI: 10.13374/j.issn2095-9389.2017.12.002.CHU F J, LIU D W, TAO M, et al. Dynamic response of sandstones with different water contents based on SHPB [J]. Chinese Journal of Engineering, 2017, 39(12): 1783–1790. DOI: 10.13374/j.issn2095-9389.2017.12.002. [20] KAWAKATA H, CHO A, KIYAMA T, et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan [J]. Tectonophysics, 1999, 313(3): 293–305. DOI: 10.1016/s0040-1951(99)00205-x. [21] HUANG S, XIA K, ZHENG H. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading [J]. Review of Scientific Instruments, 2013, 84(9): 093903. DOI: 10.1063/1.4821497. [22] 李学帅. 循环荷载作用下类砂岩损伤演化特征与本构模型研究 [D]. 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000317.LI X S. Study on damage evolution characteristics and constitutive model of sandstone-like under cyclic loading [D]. Huainan, Anhui, China: Anhui University of Science and Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000317. [23] 安然, 陈昶, 牛玉璋. 考虑干湿循环影响的残积土μ-CT扫描与渗流模拟 [J]. 工程科学与技术, 2024, 56(2): 228–235. DOI: 10.15961/j.jsuese.202200626.AN R, CHEN C, NIU Y Z. μ-CT tests and seepage simulations of residual soil under the influence of wetting-drying cycles [J]. Advanced Engineering Sciences, 2024, 56(2): 228–235. DOI: 10.15961/j.jsuese.202200626. [24] JU Y, WANG J B, GAO F, et al. Lattice-Boltzmann simulation of microscale CH4 flow in porous rock subject to force-induced deformation [J]. Chinese Science Bulletin, 2014, 59(26): 3292–3303. DOI: 10.1007/s11434-014-0465-5. [25] 王晓雨. 冲击荷载下砂岩动态损伤与渗透率演化规律研究 [D]. 石家庄: 石家庄铁道大学, 2022. DOI: 10.27334/d.cnki.gstdy.2022.000019.WANG X Y. Study on dynamic damage and permeability evolution of sandstone under impact load [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2022. DOI: 10.27334/d.cnki.gstdy.2022.000019. [26] 孔茜, 王环玲, 徐卫亚. 循环加卸载作用下砂岩孔隙度与渗透率演化规律试验研究 [J]. 岩土工程学报, 2015, 37(10): 1893–1900. DOI: 10.11779/CJGE201510018.KONG Q, WANG H L, XU W Y. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893–1900. DOI: 10.11779/CJGE201510018. [27] 王伟, 梁渲钰, 张明涛, 等. 动静组合加载下砂岩破坏机制及裂纹密度试验研究 [J]. 岩土力学, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095.WANG W, LIANG X Y, ZHANG M T, et al. Experimental study on failure mechanism and crack density of sandstone under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2021, 42(10): 2647–2658. DOI: 10.16285/j.rsm.2021.0095. [28] 张培森, 侯季群, 赵成业, 等. 不同应力状态下底板岩体渗流特性分析研究 [J]. 煤炭科学技术, 2022, 50(1): 127–133. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201011.ZHANG P S, HOU J Q, ZHAO C Y, et al. Analysis and study on seepage characteristics of floor rock mass under different stress states [J]. Coal Science and Technology, 2022, 50(1): 127–133. DOI: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201011. [29] 高振. 煤体微细观孔裂隙演化及瓦斯渗流规律实验研究 [D]. 西安: 西安科技大学, 2022. DOI: 10.27397/d.cnki.gxaku.2022.000103.GAO Z. Experimental study on fracture evolution and gas seepage law of coal micro-pore [D]. Xi’an: Xi'an University of Science and Technology, 2022. DOI: 10.27397/d.cnki.gxaku.2022.000103. [30] 郎颖娴, 梁正召, 钱希坤, 等. 岩体结构面对应力波传播及动态破坏影响研究 [J]. 地下空间与工程学报, 2023, 19(6): 1896–1906.LANG Y X, LIANG Z Z, QIAN X K, et al. A study on the effect of rock discontinuities on stress wave propagation and dynamic fracture [J]. Chinese Journal of Underground Space and Engineering, 2023, 19(6): 1896–1906. [31] 杨科, 刘文杰, 马衍坤, 等. 煤岩组合体冲击动力学特征试验研究 [J]. 煤炭学报, 2022, 47(7): 2569–2581. DOI: 10.13225/j.cnki.jccs.2021.1279.YANG K, LIU W J, MA Y K, et al. Experimental research on dynamic characteristics of coal-rock combined specimen [J]. Journal of China Coal Society, 2022, 47(7): 2569–2581. DOI: 10.13225/j.cnki.jccs.2021.1279. -