• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

超高速撞击闪光辐射特征试验研究

陈兴 韩斌 崔中华 李志文 郭明开 王桂龙

陈兴, 韩斌, 崔中华, 李志文, 郭明开, 王桂龙. 超高速撞击闪光辐射特征试验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0355
引用本文: 陈兴, 韩斌, 崔中华, 李志文, 郭明开, 王桂龙. 超高速撞击闪光辐射特征试验研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0355
CHEN Xing, HAN Bin, CUI Zhonghua, LI Zhiwen, GUO Mingkai, WANG Guilong. Experimental study of the radiation characteristics of hypervelocity impact flash[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0355
Citation: CHEN Xing, HAN Bin, CUI Zhonghua, LI Zhiwen, GUO Mingkai, WANG Guilong. Experimental study of the radiation characteristics of hypervelocity impact flash[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0355

超高速撞击闪光辐射特征试验研究

doi: 10.11883/bzycj-2024-0355
基金项目: 国家自然科学基金(11672278);
详细信息
    作者简介:

    陈 兴(1993- ),男,博士,工程师,chenxnjust@foxmail.com

    通讯作者:

    韩 斌(1976- ),男,本科,正高级工程师,hanbin_kyo@126.com

  • 中图分类号: O389

Experimental study of the radiation characteristics of hypervelocity impact flash

  • 摘要: 为研究超高速撞击中的闪光辐射特性,基于二级轻气炮平台搭建闪光辐射测试试验系统,分析了撞击速度、弹丸直径和靶室真空度对闪光频域与时域特性的影响。结果表明,闪光频域由线光谱和连续光谱组成,撞击速度和弹丸直径的增大提升了初始动能,显著增强了闪光辐射强度;靶室环境压力的提高则通过增加摩擦生热进一步提升了辐射强度。在衰减阶段,更高的撞击速度延长了闪光持续时间,但加速了温度衰减;弹丸直径对闪光持续时间和温度影响较小;靶室环境压力的降低则减缓了衰减,延长了闪光持续时间。研究表明,撞击速度和靶室环境压力对闪光特性影响显著,而弹丸直径影响有限。
  • 图  1  超高速撞击闪光辐射测量系统示意图

    Figure  1.  Schematic diagram of the hypervelocity impact flash radiometric system

    图  2  闪光光谱测试系统

    Figure  2.  Flash Spectrum Test System

    图  3  光谱频域特征曲线

    Figure  3.  Curves in the frequency domain of the spectral

    图  4  闪光积分强度变化规律

    Figure  4.  Variation law of the integral intensity of the flash

    图  5  不同撞击速度下的闪光辐射演变曲线

    Figure  5.  Evolutionary curves of flash radiation at different impact velocities

    图  6  不同弹丸直径下的闪光辐射演变曲线

    Figure  6.  Evolution curves of flash radiation for different projectile diameters

    图  7  不同靶室真空度下的闪光辐射演变曲线

    Figure  7.  Evolution curves of flash radiation at different chamber vacuum levels

    图  8  曝光时间内闪光积分强度

    Figure  8.  Flash integral intensity during exposure time

    图  9  闪光辐射积分强度

    Figure  9.  Integral intensity of flash radiation

    图  10  光谱热辐射积分强度

    Figure  10.  Integral intensity of spectral thermal radiation

    图  11  不同撞击工况下等效辐射温度时间曲线

    Figure  11.  Equivalent radiation temperature-time curves at different impact conditions

    图  12  强闪光持续时间

    Figure  12.  Duration of strong flash

    图  13  闪光温度衰减指数

    Figure  13.  Decay index of flash temperature

    表  1  超高速撞击闪光辐射试验工况

    Table  1.   Conditions of hypervelocity impact flash radiation test

    试验编号dp/ mmv/ (km·s−1H/ mmθ/(°)p/ Pa
    18#36.4320.009.60
    25#34.4320.0010.00
    26#33.1320.0010.00
    27#36.5420.0099.00
    28#36.4820.00990.00
    29#46.5820.008.90
    31#36.4620.005.80
    32#56.2520.002.90
    34#36.2920.000.58
    下载: 导出CSV
  • [1] HENDERSON M, BLUME W. Deep impact–a review of the world's pioneering hypervelocity impact mission [J]. Procedia Engineering, 2015, 103: 165–172. DOI: 10.1016/j.proeng.2015.04.023.
    [2] A'HEARN M F, BELTON M J S, DELAMERE W A, et al. Deep impact: excavating comet tempel 1 [J]. Science, 2005, 310(5746): 258–264. DOI: 10.1126/science.1118923.
    [3] ERNST C M, SCHULTZ P H. Evolution of the deep impact flash: implications for the nucleus surface based on laboratory experiments [J]. Icarus, 2007, 190(2): 334–344. DOI: 10.1016/j.icarus.2007.03.030.
    [4] IDRICI D, GOROSHIN S, SOO M J, et al. Light emission signatures from ballistic impact of reactive metal projectiles [J]. International Journal of Impact Engineering, 2021, 150: 103814. DOI: 10.1016/j.ijimpeng.2021.103814.
    [5] HEW Y M, GOEL A, CLOSE S, et al. Hypervelocity impact flash and plasma on electrically biased spacecraft surfaces [J]. International Journal of Impact Engineering, 2018, 121: 1–11. DOI: 10.1016/j.ijimpeng.2018.05.008.
    [6] EICHHORN G. Analysis of the hypervelocity impact process from impact flash measurements [J]. Planetary and Space Science, 1976, 24(8): 771–781. DOI: 10.1016/0032-0633(76)90114-8.
    [7] TSEMBELIS K, BURCHELL M J, COLE M J, et al. Residual temperature measurements of light flash under hypervelocity impact [J]. International Journal of Impact Engineering, 2008, 35(11): 1368–1373. DOI: 10.1016/j.ijimpeng.2007.09.004.
    [8] HEUNOSKE D, SCHIMMEROHN M, OSTERHOLZ J, et al. Time-resolved emission spectroscopy of impact plasma [J]. Procedia Engineering, 2013, 58: 624–633. DOI: 10.1016/j.proeng.2013.05.072.
    [9] SUGITA S, SCHULTZ P H, ADAMS M A. Spectroscopic measurements of vapor clouds due to oblique impacts [J]. Journal of Geophysical Research: Planets, 1998, 103(E8): 19427–19441. DOI: 10.1029/98JE02026.
    [10] SUGITA S, SCHULTZ P H, HASEGAWA S. Intensities of atomic lines and molecular bands observed in impact-induced luminescence [J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 5140. DOI: 10.1029/2003je002156.
    [11] HAN Y F, YUAN M E, TANG E L, et al. Experimental study on flash radiation and damage characteristics of C/SiC composites induced by hypervelocity impact [J]. International Journal of Impact Engineering, 2021, 155: 103902. DOI: 10.1016/j.ijimpeng.2021.103902.
    [12] ERLANDSON R E, TAYLOR J C, MICHAELIS C H, et al. Development of kill assessment technology for space-based applications [J]. Johns Hopkins APL Technical Digest, 2010, 29(3): 289–297.
    [13] ZHANG K, LONG R R, ZHANG Q M, et al. Flash characteristics of plasma induced by hypervelocity impact [J]. Physics of Plasmas, 2016, 23(8): 083519. DOI: 10.1063/1.4960297.
    [14] HEW Y Y M. Optical characterization methods for hypervelocity impact generated plasma [M]. Stanford: Stanford University, 2018.
    [15] MA Z X, SHI A H, LI J L, et al. Radiation evolution characteristics of the ejecta cloud produced by aluminum projectiles hypervelocity impacting aluminum plates [J]. International Journal of Impact Engineering, 2020, 138: 103480. DOI: 10.1016/j.ijimpeng.2019.103480.
    [16] MA Z X, SHI A H, LI J L, et al. Radiation mechanism analysis of hypervelocity impact Ejecta cloud [J]. International Journal of Impact Engineering, 2020, 141: 103560. DOI: 10.1016/j.ijimpeng.2020.103560.
    [17] XUE Y J, ZHANG Q M, LIU D Y, et al. Hypersonic impact flash characteristics of a long-rod projectile collision with a thin plate target [J]. Defence Technology, 2021, 17(2): 375–383. DOI: 10.1016/j.dt.2020.02.011.
    [18] XUE Y J, ZHANG Q M, HAO W, et al. Energy distribution characteristic of impact flash of metallic target impacted by hypersonic projectile [J]. International Journal of Impact Engineering, 2024, 186: 104866. DOI: 10.1016/j.ijimpeng.2023.104866.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  17
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-23
  • 修回日期:  2025-03-21
  • 网络出版日期:  2025-03-26

目录

    /

    返回文章
    返回