[1] |
范宝春, 张旭东, 潘振华, 等. 用于推进的三种爆轰波的结构特征 [J]. 力学进展, 2012, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.FAN B C, ZHANG X D, PAN Z H, et al. Fundamental characteristics of three types of detonation waves utilized in propulsion [J]. Advances in Mechanics, 2012, 42(2): 162–169. DOI: 10.6052/1000-0992-2012-2-20120204.
|
[2] |
LI C, KAILASANATH K, ORAN E S. Detonation structures behind oblique shocks [J]. Physics of Fluids, 1994, 6(4): 1600–1611. DOI: 10.1063/1.868273.
|
[3] |
TENG H H, ZHAO W, JIANG Z L. A novel oblique detonation structure and its stability [J]. Chinese Physics Letters, 2007, 24(7): 1985–1988. DOI: 10.1088/0256-307X/24/7/055.
|
[4] |
归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素 [J]. 推进技术, 2012, 33(3): 490–494. DOI: 10.13675/j.cnki.tjjs.2012.03.002.GUI M Y, FAN B C. Fine structure and its influence factor of wedge-induced oblique detonation waves [J]. Journal of Propulsion Technology, 2012, 33(3): 490–494. DOI: 10.13675/j.cnki.tjjs.2012.03.002.
|
[5] |
TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations [J]. Journal of Fluid Mechanics, 2014, 744(2): 111–128. DOI: 10.1017/jfm.2014.78.
|
[6] |
LIU Y, LIU Y S, WU D, et al. Structure of an oblique detonation wave induced by a wedge [J]. Shock Waves, 2016, 26(2): 161–168. DOI: 10.1007/s00193-015-0600-5.
|
[7] |
LIU Y, HAN X, YAO S, et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge [J]. Shock Waves, 2016, 26(6): 729–739. DOI: 10.1007/s00193-016-0626-3.
|
[8] |
YANG L, YUE L, ZHANG Q, et al. Numerical study on the shock/combustion interaction of oblique detonation waves [J]. Aerospace Science and Technology, 2020, 104: 105938. DOI: 10.1016/j.ast.2020.105938.
|
[9] |
王爱峰, 赵伟, 姜宗林. 斜爆轰的胞格结构及横波传播 [J]. 爆炸与冲击, 2010, 30(4): 349–354. DOI: 10.11883/1001-1455(2010)04-0349-06.WANG A F, ZHAO W, JIANG Z L. Cellular structure of oblique detonation and propagation of transverse wave [J]. Explosion and Shock Waves, 2010, 30(4): 349–354. DOI: 10.11883/1001-1455(2010)04-0349-06.
|
[10] |
YANG P, LI H, CHEN Z, et al. Numerical investigation on movement of triple points on oblique detonation surfaces [J]. Physics of Fluids, 2022, 34(6): 066113. DOI: 10.1063/5.0091078.
|
[11] |
YAO K, WANG C, JIANG Z. A numerical study of oblique detonation re-stabilization by expansion waves [J]. Aerospace Science and Technology, 2022, 122: 107409. DOI: 10.1016/j.ast.2022.107409.
|
[12] |
刘岩, 武丹, 王健平. 低马赫数下斜爆轰波的结构 [J]. 爆炸与冲击, 2015, 35(2): 203–207. DOI: 10.11883/1001-1455(2015)02-0203-05.LIU Y, WU D, WANG J P. Structure of oblique detonation wave at low inflow mach number [J]. Explosion and Shock Waves, 2015, 35(2): 203–207. DOI: 10.11883/1001-1455(2015)02-0203-05.
|
[13] |
ZHANG Z, WEN C, ZHANG W, et al. Formation of stabilized oblique detonation waves in a combustor [J]. Combustion and Flame, 2021, 223: 423–436. DOI: 10.1016/j.combustflame.2020.09.034.
|
[14] |
ZHANG G Q, GAO S F, XIANG G X. Study on initiation mode of oblique detonation induced by a finite wedge [J]. Physics of Fluids, 2021, 33(1): 016102. DOI: 10.1063/5.0035960.
|
[15] |
VERREAULT J, HIGGINS A J. Initiation of detonation by conical projectiles [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2311–2318. DOI: 10.1016/j.proci.2010.07.086.
|
[16] |
KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-Jouguet oblique detonation structure around hypersonic projectiles [J]. AIAA journal, 2001, 39(8): 1553–1561. DOI: 10.2514/2.1480.
|
[17] |
董刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性研究 [J]. 兵工学报, 2010, 31(4): 401–408.DONG G, FAN B C, LI H Z. An investigation on instability of deflagration and detonation induced by conical shock wave [J]. Acta Armamentarii, 2010, 31(4): 401–408.
|
[18] |
YANG P, NG H D, TENG H, et al. Initiation structure of oblique detonation waves behind conical shocks [J]. Physics of Fluids, 2017, 29(8): 086104. DOI: 10.1063/1.4999482.
|
[19] |
HAN W, WANG C, LAW C K. Three-dimensional simulation of oblique detonation waves attached to cone [J]. Physical Review Fluids, 2019, 4(5): 053201. DOI: 10.1103/PhysRevFluids.4.053201.
|
[20] |
ABISLEIMAN S, SHARMA V, BIELAWSKI R, et al. Structure of three-dimensional conical oblique detonation waves [J]. Combustion and Flame, 2025, 274: 113971. DOI: 10.1016/j.combustflame.2025.113971.
|
[21] |
STURTZER M O, TOGAMI K, YAMASHITA S, et al. Detonation wave generated by a hypervelocity projectile [J]. Heat Transfer Research, 2007, 38(4): 291–297. DOI: 10.1615/HeatTransRes.v38.i4.10.
|
[22] |
李俊红, 沈清, 程晓丽. 曲面激波诱导斜爆轰的数值模拟 [J]. 推进技术, 2019, 40(11): 2521–2527. DOI: 10.13675/j.cnki.tjjs.190041.LI J H, SHEN Q, CHENG X L. Numerical simulation on shock-induced detonation [J]. Journal of Propulsion Technology, 2019, 40(11): 2521–2527. DOI: 10.13675/j.cnki.tjjs.190041.
|
[23] |
MAEDA S, KASAHARA J, MATSUO A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation [J]. Combustion and flame, 2012, 159(2): 887–896. DOI: 10.1016/j.combustflame.2011.09.001.
|
[24] |
周平, 范宝春, 归明月. 可燃介质中飞行圆球诱导斜爆轰的流场结构 [J]. 爆炸与冲击, 2012, 32(3): 278–282. DOI: 10.11883/1001-1455(2012)03-0278-05.ZHOU P, FAN B C, GUI M Y. Flow pattern of oblique detonation induced by a hyperve locity ball in combustible gas [J]. Explosion and Shock Waves, 2012, 32(3): 278–282. DOI: 10.11883/1001-1455(2012)03-0278-05.
|
[25] |
ANDERSON J D. Modern compressible flow: with historical perspective [M]. New York: McGraw-Hill, 1990: 167-371.
|
[26] |
BOURLIOUX A, MAJDA A J. Theoretical and numerical structure for unstable two-dimensional detonations [J]. Combustion and Flame, 1992, 90(3): 211–229. DOI: 10.1016/0010-2180(92)90084-3.
|
[27] |
KURGANOV A, NOELLE S, PETROVA G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations [J]. SIAM Journal on Scientific Computing, 2001, 23(3): 707–740. DOI: 10.1137/S1064827500373413.
|
[28] |
BADER G, DEUFLHARD P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations [J]. Numerische Mathematik, 1983, 41(3): 373–398. DOI: 10.1007/BF01418331.
|
[29] |
GUI M Y, FAN B C, DONG G. Periodic oscillation and fine structure of wedge-induced oblique detonation waves [J]. Acta Mechanica Sinica, 2011, 27(6): 922–928. DOI: 10.1007/s10409-011-0508-y.
|