• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于流固耦合联合仿真的软管锥套式空中加油对接过程建模与分析

杨宇宸 杨超越 王斌 索涛 豆清波

杨宇宸, 杨超越, 王斌, 索涛, 豆清波. 基于流固耦合联合仿真的软管锥套式空中加油对接过程建模与分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0363
引用本文: 杨宇宸, 杨超越, 王斌, 索涛, 豆清波. 基于流固耦合联合仿真的软管锥套式空中加油对接过程建模与分析[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0363
YANG Yuchen, YANG Chaoyue, WANG Bin, SUO Tao, DOU Qingbo. Modeling and analysis of hose-drogue aerial refueling docking process based on fluid-solid coupling simulation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0363
Citation: YANG Yuchen, YANG Chaoyue, WANG Bin, SUO Tao, DOU Qingbo. Modeling and analysis of hose-drogue aerial refueling docking process based on fluid-solid coupling simulation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0363

基于流固耦合联合仿真的软管锥套式空中加油对接过程建模与分析

doi: 10.11883/bzycj-2024-0363
详细信息
    作者简介:

    杨宇宸

  • 中图分类号: O351.2; V212.1

Modeling and analysis of hose-drogue aerial refueling docking process based on fluid-solid coupling simulation

  • 摘要: 软管锥套式空中加油过程涉及气动力、燃油流动、柔性结构变形的复杂耦合,其耦合求解对仿真技术要求高、计算量大,严重制约了软管空中加油的准确性与安全性。为了准确分析软管锥套组合体在对接输油过程中的动力学特性,避开动力学方程建模的劣势,提出了一种考虑气动力、尾涡、软管变形与气流场双向影响、燃油内部流动综合影响下软管锥套组合体结构变形过程的流固耦合有限元模型及求解方法。模型中计算了稳定伞的作用效果并等效解耦成力和转角边界条件,推导了机翼尾涡作用力方程,采用联合仿真技术进行了流固耦合分析,软管拖曳平衡状态的计算结果与试验数据吻合良好。通过进一步仿真计算,对燃油流动、对接参数及飞行参数等甩鞭现象产生的影响因素进行了分析,结果表明:对接速度和回收加速度的匹配关系是甩鞭载荷的主要影响因素,回收加速度与最优匹配对接速度大小正相关;其次,飞行参数是次要影响因素,在不考虑燃油流动时,每一种高度下都呈现出“飞行速度越高,甩鞭载荷越低”的特点;燃油流动是一项干扰因素,一定程度会干扰上述规律,但不会影响整体规律,需要针对工况进行分析。
  • 图  1  HDA动力学模型[5]

    Figure  1.  Dynamic Modeling of HDA[5]

    图  2  卷盘与软管锥套组合体[21]

    Figure  2.  Hose-drum and HDA[21]

    图  3  HDA的载荷与边界条件

    Figure  3.  Force and boundary conditions of HDA in different states

    图  4  CFD求解稳定伞气动力

    Figure  4.  Calculation of aerodynamic force of para-drogue

    图  5  吊舱与回收绞盘建模

    Figure  5.  Modeling of refueling pod and HDA

    图  6  仿真模型总体图

    Figure  6.  General view of the simulation model

    图  7  加油机尾涡

    Figure  7.  Wake vortex of tanker

    图  8  速度分量与HDA形状

    Figure  8.  Velocity components and shape of HDA

    图  9  拖曳平衡状态结构变形

    Figure  9.  Deformation of HDA (steady-state)

    图  10  试验数据与模型仿真结果对比

    Figure  10.  Comparison of test data and simulation result

    图  11  气流场网格无关性

    Figure  11.  Grid independence of air flow field

    图  12  液流场网格无关性

    Figure  12.  Grid independence of liquid flow field

    图  13  HDA结构变形

    Figure  13.  Deformation of HDA

    图  14  简单弯曲管道内流

    Figure  14.  Flow in a simple curved pipe

    图  15  简单弯管的回收平复震荡过程

    Figure  15.  Deformation trend of simple bends at different moments

    图  16  HDA弯曲段形状

    Figure  16.  Shape of HDA curved segment

    图  17  锥套${a_{\textit{z}}}$历程(${v_{{\text{dock}}}}$=1.0~1.4 m/s,${a_{{\text{retract}}}}$=4 m/s2

    Figure  17.  ${a_{\textit{z}}}$curve of para-drogue (${v_{{\text{dock}}}}$=1.0~1.4 m/s ${a_{{\text{retract}}}}$=4 m/s2)

    图  18  锥套${a_{\textit{z}}}$历程(${v_{{\text{dock}}}}$=1.5~1.8 m/s,${a_{{\text{retract}}}}$=4 m/s2

    Figure  18.  ${a_{\textit{z}}}$curve of para-drogue (${v_{{\text{dock}}}}$=1.5~1.8 m/s, ${a_{{\text{retract}}}}$=4 m/s2)

    图  19  锥套${a_{{\textit{z}},\max }}$-${v_{{\text{dock}}}}$曲线(${a_{{\text{retract}}}}$=4 m/s2)

    Figure  19.  ${a_{{\textit{z}},\max }}$-${v_{{\text{dock}}}}$curve of para-drogue (${a_{{\text{retract}}}}$=4 m/s2)

    图  20  锥套${a_{{\textit{z}},\max }}$-${v_{{\text{dock}}}}$曲线

    Figure  20.  ${a_{{\textit{z}},\max }}$-${v_{{\text{dock}}}}$curve of para-drogue

    图  21  不同飞行参数下HDA锥套对接峰值加速度

    Figure  21.  Peak acceleration for different flight parameters

    图  22  不同参数组合下HDA锥套对接峰值加速度

    Figure  22.  Peak acceleration of paradrogue for different parameter combinations

    表  1  软管锥套组合体材料参数[26]

    Table  1.   Parameters of HDA[26]

    参数 长度/
    m
    弹性模量/
    MPa
    线密度/
    (kg·m−1)
    泊松比 锥套质量/
    kg
    23.9 300 7.73 0.4 39
    下载: 导出CSV

    表  2  拖曳平衡验证所用空中加油参数[21]

    Table  2.   Air refueling parameters used for Steady-State[21]

    参数 飞行高度/
    m
    飞行速度/
    (m·s−1)
    加油泵压/
    MPa
    加油流量/
    (L·min−1)
    7000 220 0.345 1500
    下载: 导出CSV
  • [1] 董新民, 徐跃鉴, 陈博. 自动空中加油技术研究进展与关键问题 [J]. 空军工程大学学报(自然科学版), 2008, 9(6): 1–5. DOI: 10.3969/j.issn.1009-3516.2008.06.001.

    DONG X M, XU Y J, CHEN B. Progress and challenges in automatic aerial refueling [J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(6): 1–5. DOI: 10.3969/j.issn.1009-3516.2008.06.001.
    [2] 陆宇平, 杨朝星, 刘洋洋. 空中加油系统的建模与控制技术综述 [J]. 航空学报, 2014, 35(9): 2375–2389. DOI: 10.7527/S1000-6893.2014.0093.

    LU Y P, YANG C X, LIU Y Y. A survey of modeling and control technologies for aerial refueling system [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2375–2389. DOI: 10.7527/S1000-6893.2014.0093.
    [3] 全权, 魏子博, 高俊, 等. 软管式自主空中加油对接阶段中的建模与控制综述 [J]. 航空学报, 2014, 35(9): 2390–2410. DOI: 10.7527/S1000-6893.2014.0092.

    QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2390–2410. DOI: 10.7527/S1000-6893.2014.0092.
    [4] Hansen J L , Murray J E , Campos N V . The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System[C]// Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Providence, RI: AIAA, 2004. DOI: 10.2514/6.2004-4939.
    [5] 宋梦实, 张帆, 黄攀峰. 位置约束下软式自主空中加油的抗干扰控制 [J]. 航空学报, 2023, 44(20): 629114. DOI: 10.7527/S1000-6893.2023.29114.

    SONG M S, ZHANG F, HUANG P F. Anti-disturbance control of hose-drogue autonomous aerial refueling with position constraints [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 629114. DOI: 10.7527/S1000-6893.2023.29114.
    [6] EICHLER J. Dynamic analysis of an in-flight refueling system [J]. Journal of Aircraft, 1978, 15(5): 311–318. DOI: 10.2514/3.58361.
    [7] ZHU Z H, MEGUID S A. Elastodynamic analysis of low tension cables using a new curved beam element [J]. International Journal of Solids and Structures, 2006, 43(6): 1490–1504. DOI: 10.1016/j.ijsolstr.2005.03.053.
    [8] ZHU Z H, MEGUID S A. Modeling and simulation of aerial refueling by finite element method [J]. International Journal of Solids and Structures, 2007, 44(24): 8057–8073. DOI: 10.1016/j.ijsolstr.2007.05.026.
    [9] RIBBENS W, SAGGIO F, WIERENGA R, et al. Dynamic modeling of an aerial refueling hose & drogue system [C]// Proceedings of the 25th AIAA Applied Aerodynamics Conference. Miami: AIAA, 2007. DOI: 10.2514/6.2007-3802.
    [10] 胡孟权, 聂鑫, 王丽明. “插头-锥管”式空中加油软管平衡拖曳位置计算 [J]. 空军工程大学学报(自然科学版), 2009, 10(5): 22–26. DOI: 10.3969/j.issn.1009-3516.2009.05.005.

    HU M Q, NIE X, WANG L M. Determination of hose static catenary shape in “Probe-Drogue” in-flight refueling system [J]. Journal of Air Force Engineering University (Natural Science Edition), 2009, 10(5): 22–26. DOI: 10.3969/j.issn.1009-3516.2009.05.005.
    [11] 胡孟权, 柳平, 聂鑫, 等. 大气紊流对空中加油软管锥套运动的影响 [J]. 飞行力学, 2010, 28(5): 20–23. DOI: 10.13645/j.cnki.f.d.2010.05.004.

    HU M Q, LIU P, NIE X, et al. Influence of air turbulence on the movement of hose-drogue [J]. Flight Dynamics, 2010, 28(5): 20–23. DOI: 10.13645/j.cnki.f.d.2010.05.004.
    [12] RO K, BASARAN E, KAMMAN J W. Aerodynamic characteristics of paradrogue assembly in an aerial refueling system [J]. Journal of Aircraft, 2007, 44(3): 963–970. DOI: 10.2514/1.26489.
    [13] RO K, KAMMAN J W. Modeling and simulation of hose-paradrogue aerial refueling systems [J]. Journal of Guidance, Control, and Dynamics., 2010, 33(1): 53–63. DOI: 10.2514/1.45482.
    [14] RO K, KUK T, KAMMAN J. Active control of aerial refueling hose-drogue systems [C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Toronto: AIAA, 2015. DOI: 10.2514/6.2010-8400.
    [15] 王海涛, 董新民, 窦和锋, 等. 软管锥套式空中加油系统建模与特性分析 [J]. 北京航空航天大学学报, 2014, 40(1): 92–98. DOI: 10.13700/j.bh.1001-5965.2014.01.011.

    WANG H T, DONG X M, DOU H F, et al. Dynamic modeling and characteristics analysis of hose-paradrogue aerial refueling system [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 92–98. DOI: 10.13700/j.bh.1001-5965.2014.01.011.
    [16] 王海涛, 董新民, 郭军, 等. 空中加油软管锥套组合体甩鞭现象动力学建模与分析 [J]. 航空学报, 2015, 36(9): 3116–3127. DOI: 10.7527/S1000-6893.2014.0343.

    WANG H T, DONG X M, GUO J, et al. Dynamics modeling and analysis of hose whipping phenomenon of aerial refueling hose-drogue assembly [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3116–3127. DOI: 10.7527/S1000-6893.2014.0343.
    [17] 陈乐乐, 刘学强. 不同对接速度下软式加油管锥套运动特性数值模拟研究 [J]. 空气动力学学报, 2017, 35(1): 115–122. DOI: 10.7638/kqdlxxb-2016.0038.

    CHEN L L, LIU X Q. Dynamic characteristics analysis of refueling drogue at various docking velocities [J]. Acta Aerodynamica Sinica, 2017, 35(1): 115–122. DOI: 10.7638/kqdlxxb-2016.0038.
    [18] 陈乐乐, 刘学强. 软式加油过程中软管鞭打现象数值模拟研究 [J]. 航空计算技术, 2016, 46(6): 56–59. DOI: 10.3969/j.issn.1671-654X.2016.06.015.

    CHEN L L, LIU X Q. Numerical simulation of hose whip phenomenon in hose-drogue aerial refueling [J]. Aeronautical Computing Technique, 2016, 46(6): 56–59. DOI: 10.3969/j.issn.1671-654X.2016.06.015.
    [19] 张志强, 任伟, 郝毓雅. 软式空中加油对接过程锥套运动情况 [J]. 科学技术与工程, 2020, 20(8): 3337–3341. DOI: 10.3969/j.issn.1671-1815.2020.08.057.

    ZHANG Z Q, REN W, HAO Y Y. Drogue movement during hose-drogue aerial refueling [J]. Science Technology and Engineering, 2020, 20(8): 3337–3341. DOI: 10.3969/j.issn.1671-1815.2020.08.057.
    [20] 郝毓雅, 王加亮, 韩斌. 软管式空中加油伞套摆动特性分析 [J]. 现代机械, 2019(3): 60–63. DOI: 10.13667/j.cnki.52-1046/th.2019.03.016.

    HAO Y Y, WANG J L, HAN B. Analysis of swing characteristics of probe and drogue aerial refueling paradrogue [J]. Modern Machinery, 2019(3): 60–63. DOI: 10.13667/j.cnki.52-1046/th.2019.03.016.
    [21] 闵强. 空中加油软管甩鞭现象建模与载荷计算 [J]. 四川理工学院学报(自然科学版), 2020, 33(5): 76–82. DOI: 10.11863/j.suse.2020.05.12.

    MIN Q. Dynamic modeling and load calculation of hose whipping phenomenon of aerial refueling hose-drogue assembly [J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2020, 33(5): 76–82. DOI: 10.11863/j.suse.2020.05.12.
    [22] 刘钒, 黄霞, 马率, 等. 基于MBD-CFD的软管-锥套空中加油仿真框架 [J]. 航空学报, 2023, 44(20): 628408. DOI: 10.7527/S1000-6893.2023.28408.

    LIU F, HUANG X, MA S, et al. Simulation framework for hose-drogue aerial refueling system based on MBD-CFD method [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628408. DOI: 10.7527/S1000-6893.2023.28408.
    [23] DOGAN A, VENKATARAMANAN S, BLAKE W. Modeling of aerodynamic coupling between aircraft in close proximity [J]. Journal of Aircraft, 2005, 42(4): 941–955. DOI: 10.2514/1.7579.
    [24] 张国斌, 张青斌, 丰志伟, 等. 软式空中加油对接约束力不确定性分析 [J]. 航空学报, 2021, 42(9): 224517. DOI: 10.7527/S1000-6893.2020.24517.

    ZHANG G B, ZHANG Q B, FENG Z W, et al. Uncertainty analysis on binding force of hose-drogue aerial refueling [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224517. DOI: 10.7527/S1000-6893.2020.24517.
    [25] VASSBERG J C, YEH D T, BLAIR A J, et al. Evert. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system [C]//Proceedings of the 21st AIAA Applied Aerodynamics Conference. Orlando: AIAA, 2013. DOI: 10.2514/6.2003-3508.
    [26] 张仕明. 软式空中加油管收放过程动力学分析与优化 [D]. 南京: 南京航空航天大学, 2014.

    ZHANG S M. Analysis and optimization of an aerial refueling hose & drogue system in deployment and retrieval process [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  10
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 网络出版日期:  2025-03-04

目录

    /

    返回文章
    返回