• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

地应力对岩体预裂爆破成缝过程的影响

马泗洲 蒋海明 刘科伟 王明洋

马泗洲, 蒋海明, 刘科伟, 王明洋. 地应力对岩体预裂爆破成缝过程的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0365
引用本文: 马泗洲, 蒋海明, 刘科伟, 王明洋. 地应力对岩体预裂爆破成缝过程的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0365
MA Sizhou, JIANG Haiming, LIU Kewei, WANG Mingyang. Effect of in-situ stress on fracture formation process of rock mass in presplit blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0365
Citation: MA Sizhou, JIANG Haiming, LIU Kewei, WANG Mingyang. Effect of in-situ stress on fracture formation process of rock mass in presplit blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0365

地应力对岩体预裂爆破成缝过程的影响

doi: 10.11883/bzycj-2024-0365
基金项目: 国家自然科学基金(42102331, 52334003, 52274249, 51974360)
详细信息
    作者简介:

    马泗洲(1995- ),男,博士研究生,sizhou_ma@126.com

    通讯作者:

    蒋海明(1989- ),男,博士,副教授,jhm2002@163.com

  • 中图分类号: O383

Effect of in-situ stress on fracture formation process of rock mass in presplit blasting

  • 摘要: 基于弹性力学平面应变问题假设,建立了地应力下岩体预裂爆破理论模型。通过Laplace变换和数值反演的方法分析了爆炸应力波的衰减规律,讨论了地应力对岩体预裂爆破应力场分布的影响。此外,采用显式动力学有限元方法,模拟了静水压力和非静水压力条件下岩体预裂爆破的压力演化过程和裂纹扩展行为,并通过Hough变换的方法定量表征了爆炸裂纹的分布特征。研究结果表明:深部岩体预裂爆破成缝困难主要是由于地应力削弱了爆炸引起的切向拉应力作用,孔间岩体质点因切向位移受限而无法形成拉伸破裂面,拉伸破裂成缝机制通过切向拉应力演化和质点位移矢量变化得以验证。基于应力波叠加破坏理论提出的预裂爆破孔间成缝准则可以预测岩体孔间裂纹是否贯穿,得到不同地应力条件下装药直径和孔距的关系可用于指导预裂孔布置方式,从而为深部岩体预裂爆破提供理论指导。
  • 图  1  预裂爆破理论模型示意图

    Figure  1.  Schematic diagram of theoretical model for presplit blasting

    图  2  地应力作用下炮孔周边切向应力分布

    Figure  2.  Tangential stress distribution around the borehole under in-situ stress

    图  3  炮孔中心连线方向上静态应力分布

    Figure  3.  Static stress distribution along the center line of two boreholes

    图  4  不同爆破荷载下动态切向应力演化

    Figure  4.  Evolution of the tangential stress under different blasting loads

    图  5  动态切向应力的比较与孔间峰值应力分布

    Figure  5.  Dynamic tangential stresses and distribution of maximum stress in adjacent holes

    图  6  相邻炮孔间应力波传播和叠加示意图

    Figure  6.  Diagrams of stress wave propagation and superposition in adjacent holes

    图  7  不同地应力下孔距与装药直径之间的关系

    Figure  7.  Relationship between hole spacing and charge diameter under different in-situ stresses

    图  8  爆破实验设置[26]及相应的有限元模型

    Figure  8.  Experimental setup for rock lab-scale blasting[26] and the corresponding finite element model

    图  9  爆破荷载下岩石压力和损伤过程

    Figure  9.  Explosion pressure and damage evolution of rock mass under blasting load

    图  10  岩样爆破实验[26]与模拟结果比较

    Figure  10.  Comparison of experimental[26] and numerical results for rock sample blasting

    图  11  预裂爆破数值模型及炮孔附近局部网格

    Figure  11.  Numerical model of presplit blasting and local mesh near the borehole

    图  12  静态应力初始化结果

    Figure  12.  Results of static stress initialization

    图  13  不同方法得到的静态应力分布的比较

    Figure  13.  Comparison of static stress distributions obtained by different methods

    图  14  爆炸压力演化过程

    Figure  14.  Explosion pressure evolution process

    图  15  不同工况下中点O处动态切向应力的时程曲线

    Figure  15.  Dynamical tangential stress-time curves at the middle point O under different conditions

    图  16  地应力下岩体预裂爆破裂纹扩展模式

    Figure  16.  Fracture patterns in presplit blasting under in-situ stress

    图  17  爆破裂纹及位移矢量演化

    Figure  17.  Evolution of blasting cracks and corresponding displacement vectors

    图  18  爆破裂纹的分布特征

    Figure  18.  Distribution characteristics of blasting cracks

    图  19  岩石预裂爆破优化设计(单位:m)

    Figure  19.  Optimal design scheme for rock presplit blasting (unit in m)

    图  20  不同方案下岩石爆炸压力演化过程

    Figure  20.  Evolution of explosion pressure in different design schemes for rock blasting

    图  21  不同方案中岩石爆破块体分布特征

    Figure  21.  Distribution characteristics of rock fragmentation induced by blasting in different schemes

    表  1  岩石RHT模型材料参数[27]

    Table  1.   Parameters of RHT model for rock mass[27]

    参数名称 取值 参数名称 取值 参数名称 取值
    密度ρroc/(kg·m−3) 2620 状态方程参数B0 1.22 剪切模量减小因子ξ 0.50
    抗压强度fc/MPa 162 状态方程参数B1 1.22 参考压缩应变率$ {\dot{\varepsilon }}_{0}^{\mathrm{c}} $/s−1 3.0×10−5
    初始孔隙度φ0 1.00 侵蚀塑性应变$ {\varepsilon }_{\mathrm{s}}^{\mathrm{f}} $ 2.00 参考拉伸应变率$ {\dot{\varepsilon }}_{0}^{\mathrm{t}} $/s−1 3.0×10−6
    损伤因子D1 0.04 压缩屈服面参数$ {G}_{\mathrm{c}}^{\mathrm{*}} $ 0.50 破坏压缩应变率$ {\dot{\varepsilon }}_{\mathrm{c}} $/s−1 3.0×1025
    损伤因子D2 1.00 拉伸屈服面参数$ {G}_{\mathrm{t}}^{\mathrm{*}} $ 0.70 破坏拉伸应变率$ {\dot{\varepsilon }}_{\mathrm{t}} $/s−1 3.0×1025
    破坏面参数A 2.48 洛德角相关因子B 0.05 最小损伤残余应变$ {\varepsilon }_{\mathrm{p}}^{\mathrm{m}\mathrm{i}\mathrm{n}} $ 0.012
    破坏面参数N 0.79 洛德角相关因子Q0 0.68 孔隙坍塌压力pcrush/MPa 108
    残余面参数Af 1.62 压缩应变率指数βc 0.008 孔隙压实压力pcomp/GPa 6.00
    残余面参数Nf 0.62 拉伸应变率指数βt 0.011 拉伸体积塑性应变分数$ {f}_{\mathrm{t}}^{\mathrm{p}} $ 0.001
    相对抗剪强度$ {F}_{\mathrm{s}}^{\mathrm{*}} $ 0.18 弹性剪切模量G/GPa 21.9 Hugoniot多项式系数A1/GPa 33.95
    相对抗拉强度$ {F}_{\mathrm{t}}^{\mathrm{*}} $ 0.06 状态方程参数T1/GPa 33.95 Hugoniot多项式系数A2/GPa 41.42
    孔隙度指数Npor 3.0 状态方程参数T2/GPa 0.00 Hugoniot多项式系数A3/GPa 8.71
    下载: 导出CSV

    表  2  聚乙烯材料参数[28]

    Table  2.   Parameters for polyethylene[28]

    ρpol/(kg·m−3) cpol/(m·s−1) S1 S2 S3 γpol αpol V0
    915 2901 1.481 0.0 0.0 1.64 0.0 1.0
    下载: 导出CSV

    表  3  铜材料参数[28]

    Table  3.   Parameters for copper[28]

    参数 参数 参数
    密度ρcop/(kg·m−3) 8330 材料常数ncop 0.31 EOS常数S1 1.49
    杨氏模量Ecop/GPa 110 材料常数mcop 1.09 EOS常数S2 0.0
    泊松比μcop 0.35 材料常数wcop 0.025 EOS常数S3 0.0
    熔化温度T/K 1357 材料常数Acop/GPa 0.089 EOS常数αcop 0.47
    初始内能E0/(m·s−1) 0.0 材料常数Bcop/GPa 0.292 EOS常数Ccop 4430
    下载: 导出CSV

    表  4  地应力加载条件

    Table  4.   In-situ stress conditions used in the numerical study

    应力
    状态
    工况 σhor/MPa σv/MPa 应力
    状态
    工况 σhor/MPa σv/MPa
    静水
    压力
    H1 10 10 非静水
    压力
    A1 0 20
    H2 20 20 A2 10 20
    H3 30 30 A3 30 20
    H4 40 40 A4 40 20
    下载: 导出CSV
  • [1] LIU K W, LI X D, HAO H, et al. Study on the raising technique using one blast based on the combination of long-hole presplitting and vertical crater retreat multiple-deck shots [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 41–58. DOI: 10.1016/j.ijrmms.2018.11.012.
    [2] 叶海旺, 唐可, 万涛, 等. 时序控制预裂爆破参数优化及应用 [J]. 爆炸与冲击, 2017, 37(3): 502–509. DOI: 10.11883/1001-1455(2017)03-0502-08.

    YE H W, TANG K, WAN T, et al. Optimization of time sequence controlled pre-splitting blasting parameters and its application [J]. Explosion and Shock Waves, 2017, 37(3): 502–509. DOI: 10.11883/1001-1455(2017)03-0502-08.
    [3] LI X D, LIU K W, QIU T, et al. Study of presplit blasting under high in-situ stress [J]. Engineering Fracture Mechanics, 2023, 288: 109360. DOI: 10.1016/j.engfracmech.2023.109360.
    [4] YANG L Y, YANG A Y, CHEN S Y, et al. Model experimental study on the effects of in situ stresses on pre-splitting blasting damage and strain development [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104587. DOI: 10.1016/j.ijrmms.2020.104587.
    [5] LANGEFORS U, KIHLSTRÖM B. The modern technique of rock blasting [M]. 2nd ed. Stockholm: John Wiley and Sons Incorporation, 1963.
    [6] 许传华, 张西良, 仪海豹, 等. 预裂爆破技术 [M]. 北京: 冶金工业出版社, 2024: 7–11.

    XU C H, ZHANG X L, YI H B, et al. Pre-splitting blasting technology [M]. Beijing: Metallurgical Industry Press, 2024: 7–11.
    [7] NICHOLLS H R, DUVALL W I. Presplitting rock in the presence of a static stress field [R]. Washington: U. S. Department of the Interior, Bureau of Mines, 1966.
    [8] YANG L Y, CHEN S Y, YANG A Y, et al. Numerical and experimental study of the presplit blasting failure characteristics under compressive stress [J]. Soil Dynamics and Earthquake Engineering, 2021, 149: 106873. DOI: 10.1016/j.soildyn.2021.106873.
    [9] LU W B, Chen M, GENG X, et al. A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations [J]. Tunnelling and Underground Space Technology, 2012, 29: 31–39. DOI: 10.1016/j.tust.2011.12.008.
    [10] HU Y G, LU W B, WU X X, et al. Numerical and experimental investigation of blasting damage control of a high rock slope in a deep valley [J]. Engineering Geology, 2018, 237: 12–20. DOI: 10.1016/j.enggeo.2018.01.003.
    [11] 杨帅, 刘泽功, 常帅, 等. 地应力作用下聚能爆破煤体损伤特征试验研究 [J]. 采矿与安全工程学报, 2024, 41(5): 1078–1090. DOI: 10.13545/j.cnki.jmse.2023.0499.

    YANG S, LIU Z G, CHANG S, et al. Experimental study on damage characteristics of coal body in concentrated shaped charge blasting under in-situ stress [J]. Journal of Mining & Safety Engineering, 2024, 41(5): 1078–1090. DOI: 10.13545/j.cnki.jmse.2023.0499.
    [12] YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
    [13] 马泗洲, 刘科伟, 杨家彩, 等. 不耦合装药下岩石爆破块体尺寸的分布特征 [J]. 爆炸与冲击, 2024, 44(4): 045201. DOI: 10.11883/bzycj-2023-0358.

    MA S Z, LIU K W, YANG J C, et al. Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures [J]. Explosion and Shock Waves, 2024, 44(4): 045201. DOI: 10.11883/bzycj-2023-0358.
    [14] 白羽. 地应力影响下岩石爆破损伤模型及其数值试验 [D]. 沈阳: 东北大学, 2014.

    BAI Y. Blasting damage model and numerical test of rock under effect of in situ stress [D]. Shenyang: Northeastern University, 2014.
    [15] 杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.

    YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.
    [16] LI X D, LIU K W, SHA Y Y, et al. Experimental and numerical investigation on rock fracturing in tunnel contour blasting under initial stress [J]. International Journal of Impact Engineering, 2024, 185: 104844. DOI: 10.1016/j.ijimpeng.2023.104844.
    [17] LU A, YAN P, LU W B, et al. Crack propagation mechanism of smooth blasting holes for tunnel excavation under high in-situ stress [J]. Engineering Fracture Mechanics, 2024, 304: 110144. DOI: 10.1016/j.engfracmech.2024.110144.
    [18] KIRSCH G. Die theorie der elasitzität und die bedurfnisse der festigkeitslehre [J]. Zantralblatt Verlin Deutscher Ingenieure, 1898, 42: 797–807.
    [19] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索 [J]. 岩石力学与工程学报, 2015, 34(11): 2161–2178. DOI: 10.13722/j.cnki.jrme.2015.1369.

    XIE H P, GAO F, JU Y. Research and development of rock mechanics in deep ground engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161–2178. DOI: 10.13722/j.cnki.jrme.2015.1369.
    [20] YANG J H, JIANG Q H, ZHANG Q B, et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel [J]. Tunnelling and Underground Space Technology, 2018, 71: 591–604. DOI: 10.1016/j.tust.2017.10.010.
    [21] 严鹏, 卢文波, 陈明, 等. 隧洞开挖过程初始地应力动态卸载效应研究 [J]. 岩土工程学报, 2009, 31(12): 1888–1894. DOI: 10.3321/j.issn:1000-4548.2009.12.013.

    YAN P, LU W B, CHEN M, et al. Effect of initial geo-stress dynamic unloading during tunnel excavation [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1888–1894. DOI: 10.3321/j.issn:1000-4548.2009.12.013.
    [22] LI X D, LIU K W, QIU T, et al. Numerical study on fracture control blasting using air-water coupling [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 29. DOI: 10.1007/s40948-023-00546-y.
    [23] MIKLOWITZ J. Plane-stress unloading waves emanating from a suddenly punched hole in a stretched elastic plate [J]. Journal of Applied Mechanics, 1960, 27(1): 165–171. DOI: 10.1115/1.3643892.
    [24] LI X H, ZHU Z M, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses [J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. DOI: 10.1016/j.tust.2021.103968.
    [25] 李夕兵. 凿岩爆破工程 [M]. 长沙: 中南大学出版社, 2011.
    [26] BANADAKI M M D. Stress-wave induced fracture in rock due to explosive action [D]. Toronto: University of Toronto, 2010.
    [27] 马泗洲, 刘科伟, 杨家彩, 等. 初始应力下岩体爆破损伤特性及破裂机理 [J]. 爆炸与冲击, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.

    MA S Z, LIU K W, YANG J C, et al. Blast-induced damage characteristics and fracture mechanism of rock mass under initial stress [J]. Explosion and Shock Waves, 2023, 43(10): 105201. DOI: 10.11883/bzycj-2023-0151.
    [28] BANADAKI M M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40/41: 16–25. DOI: 10.1016/j.ijimpeng.2011.08.010.
    [29] LSTC. LS-DYNA keyword user’s manual [Z]. California: Livermore Software Technology Corporation, 2003.
    [30] MA S Z, LIU K W, GUO T F, et al. Experimental and numerical investigation on the mechanical characteristics and failure mechanism of cracked coal & rock-like combined sample under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103583. DOI: 10.1016/j.tafmec.2022.103583.
    [31] HOUGH P V C. Method and means for recognizing complex patterns: US3069654A [P]. 1962-12-18.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  11
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-28
  • 修回日期:  2025-02-19
  • 网络出版日期:  2025-02-28

目录

    /

    返回文章
    返回