• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

航空发动机钛合金机匣包容性数值仿真研究

曹苗 张春阳 刘宗兴 赵振强 刘军 李玉龙

曹苗, 张春阳, 刘宗兴, 赵振强, 刘军, 李玉龙. 航空发动机钛合金机匣包容性数值仿真研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0371
引用本文: 曹苗, 张春阳, 刘宗兴, 赵振强, 刘军, 李玉龙. 航空发动机钛合金机匣包容性数值仿真研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0371
CAO Miao, ZHANG Chunyang, LIU Zongxing, ZHAO Zhenqiang, LIU Jun, LI Yulong. Study on the numerical simulation of aeroengine titanium alloy casing containment[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0371
Citation: CAO Miao, ZHANG Chunyang, LIU Zongxing, ZHAO Zhenqiang, LIU Jun, LI Yulong. Study on the numerical simulation of aeroengine titanium alloy casing containment[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0371

航空发动机钛合金机匣包容性数值仿真研究

doi: 10.11883/bzycj-2024-0371
基金项目: 国家科技重大专项(J2019-VIII-0008-0169)
详细信息
    作者简介:

    曹苗(1994-  ),女,博士研究生,maggiec@mail.nwpu.edu.cn

    通讯作者:

    刘军(1979-  ),男,博士,教授,liujun_top@nwpu.edu.cn

  • 中图分类号: O347.3

Study on the numerical simulation of aeroengine titanium alloy casing containment

  • 摘要: 针对发动机风扇机匣包容性评估需求,提出一种结合了打靶试验和有限元分析评估机匣包容能力的方法。采用叶片形弹体冲击半环模拟机匣以获取钛合金机匣的冲击损伤基本特性,并基于接触-碰撞显式动力学分析软件建立相应的数值仿真模型,对比弹体剩余速度、靶板径向变形量以及结构损伤形貌的数值模拟结果与测试结果,二者良好的一致性表明本文数值仿真方法的准确性。然后,采用验证过的数值仿真方法建立真实断裂叶片撞击风扇机匣的计算模型,研究断叶转速及断叶尺寸对机匣包容性的影响。结果表明,旋转状态下风扇机匣的包容能力大于打靶试验中机匣所能承受的叶片冲击能量,工程设计中打靶试验可按照真实机匣临界包容速度的0.76倍进行穿透阈值设计。建立了机匣包容能力表征参量与断叶转速、尺寸的关联模型,发现机匣塑性变形能与叶片丢失转速呈四次方关系,与断叶尺寸呈平方关系;且随着断叶尺寸的增大,机匣临界包容转速呈指数形式下降。
  • 图  1  叶片冲击半环模拟机匣的网格模型

    Figure  1.  Finite element model of the blade-like projectile impact on the half ring simulator

    图  2  半环打靶试验的计算模型

    Figure  2.  Calculated model of half ring ballistic impact test

    图  3  Test 1#中半环靶板径向位移的试验与仿真预测结果对比

    Figure  3.  Comparison of half ring target displacement field in case 1# between the numerical and experimental results

    图  4  弹体与半环模拟机匣损伤对比(试验与仿真)

    Figure  4.  Fragmentation of the projectile and half ring simulator (experimental versus numerical)

    图  5  真实风扇机匣有限元模型

    Figure  5.  Finite element model of real fan casing

    图  6  风扇叶片包容过程

    Figure  6.  Fan blade containment process

    图  7  叶片包容过程中的相互作用力和能量变化历程

    Figure  7.  History of interaction and energy during the blade containment process

    图  8  不同转速下风扇机匣与叶片的损伤形貌

    Figure  8.  Simulation results of fan casing and blade at different rotate speeds

    图  9  不同转速下各能量参量的变化历程

    Figure  9.  The energy history cures at different rotate speeds

    图  10  不同转速下各能量参数变化

    Figure  10.  Change of the energy parameters at different released speeds

    图  11  不同断叶尺寸的网格模型

    Figure  11.  Finite element model of fan blade with different size

    图  12  不同转速下断叶质量对能量参数的影响

    Figure  12.  Effect of blade mass on energy parameters at different rotate speeds

    图  13  断叶质量与机匣临界包容转速的关系

    Figure  13.  Relationship between blade mass and critical released speed

    表  1  TC4材料参数[10,23]

    Table  1.   Material parameters of TC4[10,23]

    ρ/(g·cm−3) E/GPa Cp/(J·kg−1·K−1) ν ρ/(g·cm−3) a γ0
    4.428 112.4 580 0.33 5130 0 1.23
    A/MPa B/MPa n C mT Tm/K Tr/K $ {\dot{\varepsilon }}_{0} $/s−1
    1130 250 0.2 0.032 1 1920 293 1
    D1 D2 D3 D4 D5 S1 S2 S3
    −0.09 0.27 0.48 0.014 3.87 1.028 0 0
     注:Cp为定压比热,ν为泊松比,ρ为密度.
    下载: 导出CSV

    表  2  TC4半环模拟机匣试验与仿真结果对比

    Table  2.   Comparison of test and simulation results of TC4 half ring simulator

    工况 靶板厚度/mm 弹体质量/g vi/(m·s−1) 结果 vr/(m·s−1) h/mm 误差/%
    试验 仿真 试验 仿真 vr h
    1# 7.00 329 120 反弹 9.12 8.87 2.74
    2# 6.95 327 185 反弹 9.46 9.90 4.65
    3# 7.03 332 203 穿透 53.0 50.6 4.52
    下载: 导出CSV

    表  3  不同断叶尺寸下的数值仿真结果

    Table  3.   Simulation results of different blade size

    断叶质量/kg结果初始动能/kJ剩余动能/kJ机匣应变能/kJ相互作用力/kN
    第1次第2次
    2.655包容22761.969.649.88.86
    4.940穿透35877.312648.216.3
    7.574穿透46412614353.231.3
    10.316穿透53818314068.452.5
    12.597穿透57319313472.4977.77
    下载: 导出CSV
  • [1] 陈光. 航空发动机结构设计分析 [M]. 3版. 北京: 北京航空航天大学, 2023: 542–546.
    [2] 宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述 [J]. 航空动力学报, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.

    XUAN H J, LU X, HONG W R, et al. Review of aero-engine case containment research [J]. Journal of Aerospace Power, 2010, 25(8): 1860–1870. DOI: 10.13224/j.cnki.jasp.2010.08.012.
    [3] 谭毅, 杨书仪, 左建华, 等. 面向包容性的航空发动机机匣研究综述 [J]. 航空工程进展, 2022, 13(6): 17–28. DOI: 10.16615/j.cnki.1674-8190.2022.06.02.

    TAN Y, YANG S Y, ZUO J H, et al. Review of aero-engine casing containment research [J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 17–28. DOI: 10.16615/j.cnki.1674-8190.2022.06.02.
    [4] 洪杰, 马艳红. 航空燃气涡轮发动机结构与设计 [M]. 北京: 科学出版社, 2021: 76–81.

    HONG J, MA Y H. Structure and design of aircraft gas turbine engine [M]. Beijing: Science Press, 2021: 76–81.
    [5] 中国民用航空总局. 航空发动机适航规定:CCAR-33 [S]. 北京: 中国民用航空总局, 2005: 78–79.
    [6] Unite State Air Force. Engine structural integrity program: MIL-STD-1783B [S]. United States: Department of Defense, 2002: 9–10.
    [7] US Department Transportation Federal Aviation Administration. Airworthiness standards: aircraft engines: FAR33 [S]. United States: Federal Aviation Administration: 1984: 81–99.
    [8] HE Z K, GUO X J, XUAN H J, et al. Characteristics and mechanisms of turboshaft engine axial compressor casing containment [J]. Chinese Journal of Aeronautics, 2021, 34(1): 171–180. DOI: 10.1016/j.cja.2020.08.050.
    [9] XUAN H J, WU R R. Aeroengine turbine blade containment tests using high-speed rotor spin testing facility [J]. Aerospace Science and Technology, 2006, 10(6): 501–508. DOI: 10.1016/j.ast.2006.04.006.
    [10] HE Q, XUAN H J, LIU L L, et al. Perforation of aero-engine fan casing by a single rotating blade [J]. Aerospace Science and Technology, 2013, 25(1): 234–241. DOI: 10.1016/j.ast.2012.01.010.
    [11] YU M Y, WANG J F, XUAN H J, et al. Simulation and experimental study of gas turbine blade tenon-root detachment on spin test [J]. Aerospace, 2024, 11(8): 629. DOI: 10.3390/aerospace11080629.
    [12] 徐雪, 李宏新, 冯国全. 风扇叶片飞失显式动力学仿真网格与时间步长研究 [J]. 航空发动机, 2021, 47(5): 12–18. DOI: 10.13477/j.cnki.aeroengine.2021.05.003.

    XU X, LI H X, FENG G Q. Study on mesh and time step of explicit dynamic simulation for fan blade out [J]. Aeroengine, 2021, 47(5): 12–18. DOI: 10.13477/j.cnki.aeroengine.2021.05.003.
    [13] MEGUID S A. Multiple blade shedding in aviation gas turbine engines: FE modeling and characterization [J]. International Journal of Mechanics and Materials in Design, 2024, 20(4): 663–670. DOI: 10.1007/s10999-023-09696-z.
    [14] ZHAO Z H, WANG L F, LU K N, et al. Effect of foreign object damage on high-cycle fatigue strength of titanium alloy for aero-engine blade [J]. Engineering Failure Analysis, 2020, 118: 104842. DOI: 10.1016/j.engfailanal.2020.104842.
    [15] MOHAMMAD Z, GUPTA P K, BAQI A. Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact [J]. International Journal of Impact Engineering, 2020, 146: 103717. DOI: 10.1016/j.ijimpeng.2020.103717.
    [16] 张铁纯, 王陆军, 胡昂, 等. 弹体撞击角度对TC4薄板抗半球形弹冲击性能影响 [J]. 机械强度, 2021, 43(3): 546–553. DOI: 10.16579/j.issn.1001.9669.2021.03.006.

    ZHANG T C, WANG L J, HU A, et al. The effect of impact angle on the ballistic performance of TC4 target against the impact of hemi-spherical projectile [J]. Journal of Mechanical Strength, 2021, 43(3): 546–553. DOI: 10.16579/j.issn.1001.9669.2021.03.006.
    [17] CARNEY K S, PEREIRA J M, REVILOCK D M, et al. Jet engine fan blade containment using an alternate geometry [J]. International Journal of Impact Engineering, 2009, 36(5): 720–728. DOI: 10.1016/j.ijimpeng.2008.10.002.
    [18] ZHANG H B, HU D Y, YE X B, et al. A simplified Johnson-Cook model of TC4T for aeroengine foreign object damage prediction [J]. Engineering Fracture Mechanics, 2022, 269: 108523. DOI: 10.1016/j.engfracmech.2022.108523.
    [19] 周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.

    ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 091407. DOI: 10.11883/bzycj-2022-0154.
    [20] JOHNSON G R, COOK W H. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [C]//Proceedings of the 7th International Symposium of Ballistics. The Hague, The Netherlands: American Defense Preparedness Association, 1983: 541-547.
    [21] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [22] HALLQUIST J O. LS-DYNA keyword user's manual (version 970) [M]. Livermore, CA, USA: Livermore Software Technology Corporation, 2003: 299-800.
    [23] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.

    HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. DOI: 10.13465/j.cnki.jvs.2016.22.024.
    [24] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  4
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2024-11-30
  • 网络出版日期:  2024-12-10

目录

    /

    返回文章
    返回