• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

大口径模块装药火炮膛内三维流场特性数值模拟

杨旭光 余永刚 陈安

杨旭光, 余永刚, 陈安. 大口径模块装药火炮膛内三维流场特性数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0407
引用本文: 杨旭光, 余永刚, 陈安. 大口径模块装药火炮膛内三维流场特性数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0407
YANG Xuguang, YU Yonggang, GHEN An. Numerical simulation of three-dimensional flow field characteristics in the chamber of large-caliber modular charge gun[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0407
Citation: YANG Xuguang, YU Yonggang, GHEN An. Numerical simulation of three-dimensional flow field characteristics in the chamber of large-caliber modular charge gun[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0407

大口径模块装药火炮膛内三维流场特性数值模拟

doi: 10.11883/bzycj-2024-0407
基金项目: 国家自然科学基金(52076111)
详细信息
    作者简介:

    杨旭光(1996- ),男,博士研究生,1611549553@qq.com

    通讯作者:

    余永刚(1963- ),男,教授,博士生导师,yygnjust801@163.com

  • 中图分类号: O381

Numerical simulation of three-dimensional flow field characteristics in the chamber of large-caliber modular charge gun

  • 摘要: 为探索某大口径模块装药火炮内弹道过程中火药床堆积分布对膛内起始压力波三维空间特性的影响,建立了模块装药的三维气固两相燃烧动力学模型,对不同药盒端盖初始破口大小的工况开展了数值模拟,研究膛内复杂气固两相反应流场特性,分析了不同工况下药床的空间分布对膛内起始压力波特性的影响。结果表明,药盒端盖初始破口角度由0°增大至120°,则药粒飞散、沉降后,近膛底侧与近弹底侧区域的药粒占比差距由12.2%降至0.6%,弹底与膛底间初始负压差的绝对值由1.62 MPa降至0.76 MPa;弹丸启动时间由2.82 ms延至2.94 ms,弹底压力达到峰值所需时间由4.04 ms增至4.20 ms,端盖初始破口尺寸的差异会对膛内三维流场特性产生影响。
  • 图  1  三维气固两相燃烧计算模型

    Figure  1.  Three-dimensional gas-solid two-phase combustion calculation model

    图  2  3种网格尺寸划分平均膛压计算结果比较

    Figure  2.  Comparison of the calculation results of average chamber pressure divided by three types of grid sizes

    图  3  155mm短管火炮射击实验系统

    Figure  3.  155mm short barrel gun firing experiment system

    图  4  实验膛底p-t和Δp-t曲线与计算结果的比较

    Figure  4.  Comparison of experimental and simulation results of the p-t curve at breech and the Δp-t curve between forcing cone and breech

    图  5  火药床堆积区域划分

    Figure  5.  Propellant bed accumulation area division

    图  6  端盖先破口部分示意图

    Figure  6.  Schematic diagram of the first break of the end cover

    图  7  火药床堆积分布主视图

    Figure  7.  Main views of propellant bed accumulation distribution

    图  8  膛底与坡膛的压差曲线

    Figure  8.  Pressure difference curve between breech and forcing cone

    图  9  各特征时刻膛内压力三维空间分布

    Figure  9.  3D spatial distribution of pressure in chamber at each characteristic time

    图  10  火炮膛内观测点的三维空间分布

    Figure  10.  Three-dimensional spatial distribution of observation points in chamber

    图  11  火炮膛内的X轴向压力演变

    Figure  11.  Evolution of X-axial pressure in chamber

    图  12  火药燃烧后膛内压力梯度及气相运动规律示意图

    Figure  12.  Schematic diagrams of pressure gradient and gas phase movement in the chamber after propellant combustion

    图  13  火炮膛内的Z轴向压力演变

    Figure  13.  Z-axial pressure evolution in the chamber

    图  14  弹丸运动前各工况弹底与膛底的压差曲线

    Figure  14.  Pressure difference curves between forcing cone and breech different conditions before the bullet movement

    图  15  弹丸启动前各工况于过原点XZ切面上的压力梯度云图

    Figure  15.  Cloud image of pressure gradient at the origin XZ plane before the bullet movement under each condition

    图  16  弹丸启动后各工况于过原点XZ切面上的压力梯度云图

    Figure  16.  The pressure gradient cloud image of each condition on the origin XZ plane after the bullet movement

    表  1  不同工况下火药床形状特征参数

    Table  1.   Shape characteristic parameters of propellant bed under different working conditions

    工况 端盖初始破口
    角度/(º)
    近膛底区域
    长度/mm
    近弹底区域
    长度/mm
    近膛底区域
    厚度/mm
    近弹底区域
    厚度/mm
    近膛底区域
    药粒占比/%
    近弹底区域
    药粒占比/%
    1 0 314 166 15.1 28.1 43.9 56.1
    2 30 324 156 18.6 27.8 44.8 55.2
    3 60 328 152 19.2 27.0 47.1 52.9
    4 90 333 147 19.7 25.6 48.7 51.3
    5 120 340 140 20.1 24.6 50.3 49.7
    下载: 导出CSV

    表  2  各组压力观测点处压力的相对平均偏差

    Table  2.   The relative mean deviation of pressure at each pressure observation point

    时间/ms $\delta p$(X=80 mm
    Z=30 mm)/%
    $\delta p$(X=240 mm
    Z=0 mm)/%
    $\delta p$(X=400 mm
    Z=−15 mm)/%
    0.00 0.035 0.015 0.050
    0.48 0.075 0.083 0.185
    0.96 0.056 0.055 0.191
    1.30 0.064 0.040 0.232
    1.64 0.034 0.041 0.140
    1.98 0.051 0.069 0.193
    2.32 0.031 0.054 0.079
    2.62 0.048 0.082 0.095
    2.92 0.063 0.052 0.163
    4.46 0.029 0.013 0.139
    6.00 0.077 0.035 0.132
    下载: 导出CSV

    表  3  各工况弹丸启动时刻及弹底压力达到峰值所需时间

    Table  3.   The bullet starting time and the time required for the bottom pressure to reach the peak under each working condition

    药盒端盖破口
    夹角/(º)
    弹丸启动
    压力/MPa
    弹丸启动
    时刻/ms
    弹底压力
    峰值/MPa
    弹底压力达到峰值
    所需时间/ms
    0 30.00 2.82 44.24 4.04
    30 30.00 2.88 43.92 4.06
    60 30.00 2.89 43.82 4.08
    90 30.00 2.92 44.27 4.14
    120 30.00 2.94 43.84 4.20
    下载: 导出CSV

    表  4  特征时刻各工况弹丸位移

    Table  4.   Bullet displacements at characteristic times under different working conditions

    药盒端盖破口夹角/(º)L/mm
    t=2.94 mst=3.49 mst=4.04 mst=4.12 mst=4.20 mst=5.10 mst=6.00 ms
    00.5418.4465.1374.6384.83244.15423.58
    300.1615.3558.5667.5077.13223.78410.12
    600.0914.4556.4065.1174.52219.10403.39
    900.0213.0553.4961.9671.13215.46401.76
    1200.0012.2251.6559.5368.92212.53399.70
    下载: 导出CSV

    表  5  特征时刻各工况弹丸的加速度

    Table  5.   Bullet accelerations at characteristic times under different working conditions

    药盒端盖破口夹角/(º)a/(m·s−2)
    t=2.94 mst=3.49 mst=4.04 mst=4.12 mst=4.20 mst=5.10 mst=6.00 ms
    078336949291105071096841080525390332037
    3076957924201098871090081083895438733754
    6076354910121090721096561090005472434373
    9075619902731078451104631105695487134562
    12075081892681068111084381107875503634771
    下载: 导出CSV
  • [1] 王彬, 周涛, 胡志东, 等. 全可燃药筒发展现状及前景 [J]. 兵工自动化, 2019, 38(8): 88–90. DOI: 10.7690/bgzdh.2019.08.026.

    WANG B, ZHOU T, HU Z D, et al. Combustible cartridge case development current situation and its prospects [J]. Ordnance Industry Automation, 2019, 38(8): 88–90. DOI: 10.7690/bgzdh.2019.08.026.
    [2] 董凤鸣, 刘东尧. 模块药盒装填位置及药粒散布状态对内弹道特性影响的数值模拟研究 [J]. 弹道学报, 2023, 35(4): 20–26. DOI: 10.12115/j.issn.1004-499X(2023)04-003.

    DONG F M, LIU D Y. Numerical simulation on the influence of filling position of modular cartridge and particle distribution state on internal ballistic characteristics [J]. Journal of Ballistics, 2023, 35(4): 20–26. DOI: 10.12115/j.issn.1004-499X(2023)04-003.
    [3] QIAN H Y, YU Y G, LIU J. Effects of module number and firing condition on charge thermal safety in gun chamber [J]. Defence Technology, 2022, 18(1): 27–37. DOI: 10.1016/j.dt.2020.11.003.
    [4] BRUNET L E, FITAS T, CUVELIER S, et al. Deep and machine learning architecture for high accuracy prediction of interior ballistics for modular charges [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(10): e202300151. DOI: 10.1002/prep.202300151.
    [5] 王泽山. 模块装药技术及其进展 [J]. 含能材料, 2004, 12(S1): 122. DOI: 10.3969/j.issn.1006-9941.2004.z1.031.

    WANG Z S. Module charging technology and its progress [J]. Chinese Journal of Energetic Materials, 2004, 12(S1): 122. DOI: 10.3969/j.issn.1006-9941.2004.z1.031.
    [6] 王育维, 郭映华, 董彦诚, 等. 可燃容器对小号模块装药压力波影响的研究 [J]. 火炮发射与控制学报, 2016, 37(2): 31–35,45. DOI: 10.19323/j.issn.1673-6524.2016.02.007.

    WANG Y W, GUO Y H, DONG Y C, et al. Study of combustible case effects on pressure waves for low-zone of bi-modular charge [J]. Journal of Gun Launch and Control, 2016, 37(2): 31–35,45. DOI: 10.19323/j.issn.1673-6524.2016.02.007.
    [7] 聂奎. 等离子体点火对模块装药内弹道性能影响的研究 [D]. 南京: 南京理工大学, 2010. DOI: 10.7666/d.Y1698160.

    NIE K. Studies on influence of plasma ignition to the interior ballistic performance of the gun with modular charges [D]. Nanjing: Nanjing University of Science and Technology, 2010. DOI: 10.7666/d.Y1698160.
    [8] WOODLEY C. On the use of accurate ignition and combustion models in internal ballistics gun codes [J]. Chinese Journal of Explosives and Propellants, 2018, 41(2): 117–121. DOI: 10.14077/j.issn.1007-7812.2018.02.002.
    [9] 陈安, 余永刚. 两模块装药点传火过程及药粒散布特性 [J]. 爆炸与冲击, 2021, 41(7): 072301. DOI: 10.11883/bzycj-2020-0215.

    CHEN A, YU Y G. Ignition process and propellant grains distribution of the two-module charge [J]. Explosion and Shock Waves, 2021, 41(7): 072301. DOI: 10.11883/bzycj-2020-0215.
    [10] 森思义, 王浩, 陶如意. 基于CE/SE方法对模块装药点传火过程的数值模拟及特性研究 [J]. 含能材料, 2022, 30(7): 744–751. DOI: 10.11943/CJEM2022002.

    SEN S Y, WANG H, TAO R Y. Numerical simulation and characteristics analysis on lgnition and flame-propagation process of modular charge based on CE/SE method [J]. Chinese Journal of Energetic Materials, 2022, 30(7): 744–751. DOI: 10.11943/CJEM2022002.
    [11] 冯渊, 王育维, 朱文芳, 等. 基于CE/SE方法的某大口径火炮模块装药内弹道数值模拟 [J]. 火炮发射与控制学报, 2023, 44(6): 51–59. DOI: 10.19323/j.issn.1673-6524.2023.06.008.

    FENG Y, WANG Y W, ZHU W F, et al. Numerical simulation on interior ballistic of a large caliber cannon with modular propellant charge based on CE/SE method [J]. Journal of Gun Launch & Control, 2023, 44(6): 51–59. DOI: 10.19323/j.issn.1673-6524.2023.06.008.
    [12] MA C J, ZHANG X B. Interior ballistic modeling and simulation for different charge zones in modular charge system [J]. Journal of Applied Mechanics, 2013, 80(3): 031404. DOI: 10.1115/1.4023314.
    [13] CHENG S S, TAO R Y, XUE S, et al. Two-phase flow characteristics of different charging structure in ignition and flame-spreading [J]. Combustion Theory and Modelling, 2021, 25(4): 751–764. DOI: 10.1080/13647830.2021.1937703.
    [14] CHENG S S, TAO R Y, XUE S, et al. The particle element method to obtain parameter distributions of two-phase reactive flow in a propulsion combustion system [J]. Combustion Science and Technology, 2024, 196(5): 730–752. DOI: 10.1080/00102202.2022.2101104.
    [15] MA T Y, WANG H, TAO R Y. Investigation of combustion process in a modular charge system with a primer gap [J]. AIP Advances, 2023, 13(11): 115018. DOI: 10.1063/5.0170254.
    [16] CHEN A, YU Y G. Three-dimensional particle-scale investigation of transient gas-solid flow characteristics in the propulsion system with a complex charge structure [J]. Physics of Fluids, 2024, 36(8): 085122. DOI: 10.1063/5.0216737.
    [17] 杨旭光, 余永刚, 陈安. 单模块装药点火燃烧过程中端盖破裂形态对药粒散布的影响 [J]. 火炸药学报, 2022, 45(4): 582–589. DOI: 10.14077/j.issn.1007-7812.202201005.

    YANG X G, YU Y G, CHEN A. Effect of rupture form of end cover on grain dispersion during ignition and combustion of single module charge [J]. Chinese Journal of Explosives and Propellants, 2022, 45(4): 582–589. DOI: 10.14077/j.issn.1007-7812.202201005.
    [18] 金志明. 枪炮内弹道学 [M]. 北京: 北京理工大学出版社, 2004.

    JIN Z M. Interior ballistics of guns [M]. Beijing: Beijing Institute of Technology Press, 2004.
    [19] 陆中兵, 周彦煌. 模块装药火炮膛内两相燃烧模型及压力波模拟 [J]. 爆炸与冲击, 1999, 19(3): 269–273. DOI: 10.11883/1001-1455(1999)03-0269-5.

    LU Z B, ZHOU Y H. Two phase-combustion model and numerical simulation of pressure wave in the gun with modular charges [J]. Explosion and Shock Waves, 1999, 19(3): 269–273. DOI: 10.11883/1001-1455(1999)03-0269-5.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  16
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2025-03-17
  • 网络出版日期:  2025-03-18

目录

    /

    返回文章
    返回