• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

数据驱动的车辆爆炸防护结构优化设计方法

肖杉雨 孙晓旺 秦伟伟 王利辉 王显会 李明星 付条奇 张强

肖杉雨, 孙晓旺, 秦伟伟, 王利辉, 王显会, 李明星, 付条奇, 张强. 数据驱动的车辆爆炸防护结构优化设计方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0411
引用本文: 肖杉雨, 孙晓旺, 秦伟伟, 王利辉, 王显会, 李明星, 付条奇, 张强. 数据驱动的车辆爆炸防护结构优化设计方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0411
XIAO Shanyu, SUN Xiaowang, QIN Weiwei, WANG Lihui, WANG Xianhui, LI Mingxing, FU Tiaoqi, ZHANG Qiang. On data-driven optimization design of protective structures for vehicles against explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0411
Citation: XIAO Shanyu, SUN Xiaowang, QIN Weiwei, WANG Lihui, WANG Xianhui, LI Mingxing, FU Tiaoqi, ZHANG Qiang. On data-driven optimization design of protective structures for vehicles against explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0411

数据驱动的车辆爆炸防护结构优化设计方法

doi: 10.11883/bzycj-2024-0411
基金项目: 国家自然科学基金(52272370,52272437,52402513);先进越野系统技术全国重点实验室开放基金
详细信息
    作者简介:

    肖杉雨(2000- ),男,硕士研究生,325692577@qq.com

    通讯作者:

    王显会(1968- ),男,博士,教授,13770669850@139.com

  • 中图分类号: O385

On data-driven optimization design of protective structures for vehicles against explosion

  • 摘要: 针对车辆爆炸防护结构优化中数据来源匮乏、代理模型精度低、优化效率低和可靠性不足的问题,提出了一种数据增广方法结合半监督回归的数据驱动方法。通过改进生成对抗网络(generative adversarial network,GAN),提出了Gaussian密度估算-对抗生成网络(Gaussian density estimation-Wasserstein generative adversarial network,GDE-W-GAN);分别采用GDE-WGAN、Gaussian模型、最优拉丁超立方方法,并结合半监督支持向量回归,对原始数据集进行增广,通过对比不同方法的数据增广效果,验证了GDE-WGAN的可行性和优越性;通过多目标优化分别求解数据增广前后代理模型的最优解,并通过有限元仿真验证比较。结果表明,GDE-WGAN结合半监督回归的方法可以显著提升代理模型的拟合精度,2个输出变量的决定系数R2分别提升了16.7%和4.2%。结合半监督回归的数据增广优化方法在准确性和优化效率方面具有较大提升。
  • 图  1  某轻型车身底部爆炸案例有限元模型

    Figure  1.  Finite element model of a light vehicle subjected to a bottom explosion

    图  2  轻型车身底部爆炸案例ATD下Z向胫骨力响应实验结果与仿真数据的比较

    Figure  2.  Experimental and simulated results of the Z-direction force response of the lower tibia in ATD of a light vehicle subjected to a bottom explosion

    图  3  GAN结构示意图

    Figure  3.  Schematic diagram of GAN structure

    图  4  GAN生成数据与原始数据对比的可视化散点图

    Figure  4.  Visualization of scatter plots of GAN-generated data compared with raw data

    图  5  GDE-WGAN结构示意图

    Figure  5.  Schematic diagram of GDE-WGAN structure

    图  6  GDE-WGAN生成数据与原始数据对比可视化散点图

    Figure  6.  Visualization of scatter plots comparing GDE-WGAN generated data with raw data

    图  7  最优拉丁方采样生成数据与原始数据对比可视化散点图

    Figure  7.  Comparison of the data generated by the optimal Latin sampling and the original data to visualize the scatter plot

    图  8  Gaussian模型生成数据与原始数据对比可视化散点图

    Figure  8.  Comparison of Gaussian model generated data with raw data and visual scatter plots

    图  9  生成数据整体分布与局部分布相似性评价示意图

    Figure  9.  Schematic diagram of the similarity evaluation of the global distribution and local distribution of the generated data

    图  10  自训练框架下半监督回归算法流程

    Figure  10.  Flowchart of semi-supervised regression algorithm under self-training framework

    图  11  初始模型与半监督训练后模型性能对比

    Figure  11.  Comparison of the performance of the initial model with one of the model after semi-supervised training

    图  12  不同生成数据数量下半监督回归模型性能随迭代次数的变化

    Figure  12.  Variation of semi-supervised regression model performance with the number of iterations for different numbers of generated data

    图  13  利用不同未标记样本集进行半监督学习代理模型性能指标

    Figure  13.  Performance indicators of semi-supervised learning model using different unlabeled sample sets

    图  14  初始模型和最终模型的Pareto前沿解集

    Figure  14.  Pareto frontier solution sets of initial model and final model

    表  1  最优拉丁超立方实验采样样本

    Table  1.   Optimal Latin hypercube experimental sampling samples

    No. X1/mm X2/mm X3/mm X4/mm X5/mm
    1 5.240 9.380 3.340 4.720 0.531
    ··· ··· ··· ··· ··· ···
    15 5.450 5.860 3.000 6.620 0.345
    16 6.90 10.000 5.760 6.100 0.738
    ··· ··· ··· ··· ··· ···
    29 9.590 8.970 4.550 4.210 0.593
    30 8.140 6.280 5.590 7.830 0.262
    下载: 导出CSV

    表  2  传统优化流程代理模型性能指标

    Table  2.   Performance metrics of the surrogate model in the traditional optimization process

    预测目标 R2 eMS εMAP
    假人左胫骨力 0.61 168365 N2 0.0557
    爆炸防护结构总体质量 0.87 9.74×10−5 t2 0.0199
    下载: 导出CSV

    表  3  生成器和判别器网络的结构参数

    Table  3.   Structure parameters for generator and discriminator networks

    模型类型 层类型 输入维度 输出维度 激活函数
    生成器 全连接层 105 128
    128 256 ReLU
    256 128 ReLU
    128 5
    判别器 全连接层 11 512
    512 256 ReLU
    128 64 ReLU
    64 1 Sigmoid
    下载: 导出CSV

    表  4  GDE-WGAN超参数设定

    Table  4.   GDE-WGAN hyperparameter settings

    超参数 对应符号 赋值
    总训练轮数 nepoches 10000
    批大小 B 64
    判别器更新次数 ncritic 5
    权重剪切限制 λgp 5
    Adam优化学习率 c 0.01
    Adam优化器指数衰减率 (β1, β2) (0.5, 0.9)
    特征标准差 f(G(z)) 特征范围的$ \dfrac{1}{4} $
    下载: 导出CSV

    表  5  初始模型与最终模型预测帕累托最优解及对应优化结构参数

    Table  5.   Pareto optimal solutions predicted by the initial and final models and corresponding optimized structural parameters

    模型X1/mmX2/mmX3/mmX4/mmX5/mm$ {Y}_{1} $/N$ {Y}_{2} $/t
    初始模型9.785.75.60.64574.10.595
    最终模型9.97.75.65.10.5744380.593
    下载: 导出CSV

    表  6  初始模型和最终模型预测结果与仿真计算结果的对比

    Table  6.   Comparison of errors between predicted results of the initial and final models and simulation results

    模型 Y1 Y2
    预测
    结果/N
    计算
    结果/N
    误差/% 预测
    结果/t
    计算
    结果/t
    误差/%
    初始模型 4574.1 5174 11.6 0.595 0.566 5.12
    最终模型 4438 4756 6.7 0.593 0.574 3.31
    下载: 导出CSV
  • [1] 吴凯. 基于不确定性的车辆底部防护结构优化设计 [D]. 南京: 南京理工大学, 2021: 1–14. DOI: 10.27241/d.cnki.gnjgu.2021.001134.

    WU K, Uncertainty-based design optimization for vehicle bottom protection structures [D]. Nanjing: Nanjing University of Science and Technology, 2021: 1–14. DOI: 10.27241/d.cnki.gnjgu.2021.001134.
    [2] 陈学军, 杨学文, 张永珍. 地雷爆炸作用下装甲车辆底部防护结构优化仿真研究 [J]. 兵工学报, 2014, 35(S2): 353–357.

    CHEN X J, YANG X W, ZHANG Y Z. A simulation study of structural optimization of armor vehicle bottom protection under the landmine explosion [J]. Acta Armamentarii, 2014, 35(S2): 353–357.
    [3] ŚWIERCZEWSKI M, SŁAWIŃSKI G. Modelling and numerical analysis of explosion under the wheel of light armoured military vehicle [J]. Engineering Transactions, 2017, 65(4): 587–599. DOI: 10.24423/engtrans.793.2017.
    [4] YANG Y, LIOU W W, SHENG J, et al. Shock wave impact simulation of a vehicle occupant using fluid/structure/dynamics interactions [J]. International Journal of Impact Engineering, 2013, 52: 11–22. DOI: 10.1016/j.ijimpeng.2012.09.002.
    [5] 方海涛. 车辆底部波纹抗爆炸防护结构防护机理及优化设计研究 [D]. 南京: 南京理工大学, 2019: 3–9. DOI: 10.27241/d.cnki.gnjgu.2019.000745.

    FANG H T, Research on the protection mechanism and optimized design of corrugated anti-explosion protection structures at the vehicle undercarriage [D]. Nanjing: Nanjing University of Science and Technology, 2019: 3–9. DOI: 10.27241/d.cnki.gnjgu.2019.000745.
    [6] CONG M, ZHOU Y B, ZHANG M, et al. Design and optimization of multi-V hulls of light armoured vehicles under blast loads [J]. Thin-Walled Structures, 2021, 168: 108311. DOI: 10.1016/j.tws.2021.108311.
    [7] 李明星, 王显会, 周云波, 等. 基于神经网络的车辆抗冲击防护组件优化 [J]. 爆炸与冲击, 2020, 40(2): 024203-1-024203-9. DOI: 10.11883/bzycj-2019-0055.

    LI M X, WANG X H, ZHOU Y B, et al. Research on optimization of vehicle anti-shock protection components based on neural network[J]. Explosion and Shock Waves, 2020, 40(2): 024203-1-024203-9. DOI: 10.11883/bzycj-2019-0055
    [8] 徐克非, 王显会, 周云波, 等. 爆炸环境下车辆底部V型结构多参数优化研究 [J]. 兵器装备工程学报, 2020, 41(1): 28–32,37. DOI: 10.11809/bqzbgcxb2020.01.006.

    XU K F, WANG X H, ZHOU Y B, et al. Multi-parameter optimization of underbody V-shaped structure under explosion load [J]. Journal of Ordnance Equipment Engineering, 2020, 41(1): 28–32,37. DOI: 10.11809/bqzbgcxb2020.01.006.
    [9] XIAO B, ZHANG Y X, CHEN Y, et al. A semi-supervised learning detection method for vision-based monitoring of construction sites by integrating teacher-student networks and data augmentation [J]. Advanced Engineering Informatics, 2021, 50: 101372. DOI: 10.1016/j.aei.2021.101372.
    [10] ZHOU B, DUAN H R, WU Q W, et al. Short-term prediction of wind power and its ramp events based on semi-supervised generative adversarial network [J]. International Journal of Electrical Power and Energy Systems, 2021, 125: 106411. DOI: 10.1016/j.ijepes.2020.106411.
    [11] MU G Q, CHEN J. Developing a conditional variational autoencoder to guide spectral data augmentation for calibration modeling [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2501008. DOI: 10.1109/TIM.2022.3142060.
    [12] ZHANG X, ZOU Y Y, LI S Y. Semi-supervised generative adversarial network with guaranteed safeness for industrial quality prediction [J]. Computers and Chemical Engineering, 2021, 153: 107418. DOI: 10.1016/j.compchemeng.2021.107418.
    [13] NJIMA W, BAZZI A, CHAFII M. DNN-based indoor localization under limited dataset using GANs and semi-supervised learning [J]. IEEE Access, 2022, 10: 69896–69909. DOI: 10.1109/ACCESS.2022.3187837.
    [14] 马琳琪, 李校男, 晁涛, 等. 基于高斯数据增广的小样本数据无人机编队类型抗扰识别 [J]. 无人系统技术, 2023, 6(6): 42–50. DOI: 10.19942/j.issn.2096-5915.2023.06.59.

    MA L Q, LI X N, CHAO T, et al. Anti-disturbance identification of UAV formation types based on Gaussian data augmentation with small sample data [J]. Unmanned Systems Technology, 2023, 6(6): 42–50. DOI: 10.19942/j.issn.2096-5915.2023.06.59.
    [15] WU B Y, MENG D L, ZHAO H X. Semi-supervised learning for seismic impedance inversion using generative adversarial networks [J]. Remote Sensing, 2021, 13(5): 909. DOI: 10.3390/rs13050909.
    [16] SHI X M, GU L J, LI X F, et al. Automated spectral transfer learning strategy for semi-supervised regression on Chlorophyll: a retrievals with Sentinel-2 imagery [J]. International Journal of Digital Earth, 2024, 17(1): 2313856. DOI: 10.1080/17538947.2024.2313856.
    [17] LI Y L, LIAO Y L, SUN Z Y, et al. Semi-supervised contrastive regression for pharmaceutical processes [J]. Expert Systems with Applications, 2024, 238: 121974. DOI: 10.1016/j.eswa.2023.121974.
    [18] LI Z, JIN H P, DONG S L, et al. Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data [J]. Chemical Engineering Research and Design, 2022, 179: 510–526. DOI: 10.1016/j.cherd.2022.01.026.
    [19] ZHENG J H, LIU Y X, LIU Y, et al. Semi-supervised process data regression and application based on latent factor analysis model [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2527511. DOI: 10.1109/TIM.2023.3317484.
    [20] CALDERON-RAMIREZ S, OALA L, TORRENTS-BARRENA J, et al. Dataset similarity to assess semisupervised learning under distribution mismatch between the labeled and unlabeled datasets [J]. IEEE Transactions on Artificial Intelligence, 2023, 4(2): 282–291. DOI: 10.1109/TAI.2022.3168804.
    [21] ZHENG Q C, WU M Y, SUN X W, et al. Combined Bayesian and error assessment-based model calibration method for vehicle under-belly blast with uncertainty [J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 136. DOI: 10.1007/s00158-022-03226-9.
    [22] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning [J]. Journal of Big Data, 2019, 6(1): 60. DOI: 10.1186/s40537-019-0197-0.
    [23] SHORTEN C, KHOSHGOFTAAR T M, FURHT B. Text data augmentation for deep learning [J]. Journal of Big Data, 2021, 8(1): 101. DOI: 10.1186/s40537-021-00492-0.
    [24] NANNI L, MAGUOLO G, PACI M. Data augmentation approaches for improving animal audio classification [J]. Ecological Informatics, 2020, 57: 101084. DOI: 10.1016/j.ecoinf.2020.101084.
    [25] 王宁. 生成对抗网络地震数据增强方法研究 [D]. 北京: 中国石油大学(北京), 2021: 47–59. DOI: 10.27643/d.cnki.gsybu.2021.000536.

    WANG N, Research on interpolation method of seismic data based on generative adversarial network [D]. Beijing: China University of Petroleum (Beijing), 2021: 47–59. DOI: 10.27643/d.cnki.gsybu.2021.000536.
    [26] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139–144. DOI: 10.1145/3422622.
    [27] ZHOU Z H, LI M. Semi-supervised regression with co-training [C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. Edinburgh: Morgan Kaufmann Publishers Inc. , 2005: 908–913.
    [28] 秦世强, 杨睿, 苏晟. 基于自训练半监督神经网络的结构损伤识别 [J]. 地震工程与工程振动, 2024, 44(2): 38–49. DOI: 10.13197/j.eeed.2024.0205.

    QIN S Q, YANG R, SU M. Structural damage identification based on self-training semi-supervised neural network [J]. Earthquake Engineering and Engineering Dynamics, 2024, 44(2): 38–49. DOI: 10.13197/j.eeed.2024.0205.
    [29] 丁世飞, 孙玉婷, 梁志贞, 等. 弱监督场景下的支持向量机算法综述 [J]. 计算机学报, 2024, 47(5): 987–1009. DOI: 10.11897/SP.J.1016.2024.00987.

    DING S F, SUN Y T, LIANG Z Z, et al. Survey on support vector machine algorithms in weakly supervised scenarios [J]. Chinese Journal of Computers, 2024, 47(5): 987–1009. DOI: 10.11897/SP.J.1016.2024.00987.
    [30] MEY A, LOOG M. Improved generalization in semi-supervised learning: a survey of theoretical results [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4747–4767. DOI: 10.1109/TPAMI.2022.3198175.
    [31] 刘建伟, 刘媛, 罗雄麟. 半监督学习方法 [J]. 计算机学报, 2015, 38(8): 1592–1617. DOI: 10.11897/SP.J.1016.2015.01592.

    LIU J W, LIU Y, LUO X L. Semi-supervised learning methods [J]. Chinese Journal of Computers, 2015, 38(8): 1592–1617. DOI: 10.11897/SP.J.1016.2015.01592.
    [32] STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4): 341–359. DOI: 10.1023/A:1008202821328.
    [33] SLOWIK A, KWASNICKA H. Evolutionary algorithms and their applications to engineering problems [J]. Neural Computing and Applications, 2020, 32(16): 12363–12379. DOI: 10.1007/s00521-020-04832-8.
    [34] 魏然, 王显会, 周云波, 等. 帕累托最优在车辆底部防护结构设计中的应用研究 [J]. 兵工学报, 2015, 36(6): 1061–1066. DOI: 10.3969/j.issn.1000-1093.2015.06.014.

    WEI R, WANG X, ZHOU Y, et al. Application of pareto optimality in protective structure design of vehicle underbody [J]. Acta Armamentarii, 2015, 36(6): 1061–1066. DOI: 10.3969/j.issn.1000-1093.2015.06.014.
    [35] 朱孙科, 陈历, 倪颖倩, 等. 基于NSGA-Ⅱ的复合材料防撞梁碰撞损伤多目标优化 [J]. 塑性工程学报, 2024, 31(2): 173–181. DOI: 10.3969/j.issn.1007-2012.2024.02.022.

    ZHU J K, CHEN L, NI Y Q, et al. Multi-objective optimization of collision damage of reinforced plastic anti-collision beams based on NSGA-Ⅱ [J]. Journal of Plasticity Engineering, 2024, 31(2): 173–181. DOI: 10.3969/j.issn.1007-2012.2024.02.022.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  11
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2025-03-01
  • 网络出版日期:  2025-03-04

目录

    /

    返回文章
    返回