• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

动态恒速剪切下砂岩粗糙结构面的力学行为及嗣后渗流特性

蔚立元 武东阳 苏海健 袁紫宸 鞠明和

蔚立元, 武东阳, 苏海健, 袁紫宸, 鞠明和. 动态恒速剪切下砂岩粗糙结构面的力学行为及嗣后渗流特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0417
引用本文: 蔚立元, 武东阳, 苏海健, 袁紫宸, 鞠明和. 动态恒速剪切下砂岩粗糙结构面的力学行为及嗣后渗流特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0417
YU Liyuan, WU Dongyang, SU Haijian, YUAN Zichen, JU Minghe. Mechanical behavior and subsequent seepage characteristics of rough structural planes in sandstone under constant shear rate[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0417
Citation: YU Liyuan, WU Dongyang, SU Haijian, YUAN Zichen, JU Minghe. Mechanical behavior and subsequent seepage characteristics of rough structural planes in sandstone under constant shear rate[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0417

动态恒速剪切下砂岩粗糙结构面的力学行为及嗣后渗流特性

doi: 10.11883/bzycj-2024-0417
基金项目: 国家自然科学基金(52179118, 52274100)
详细信息
    作者简介:

    蔚立元(1982- ),男,博士,教授,yuliyuan@cumt.edu.cn

  • 中图分类号: O346; O389

Mechanical behavior and subsequent seepage characteristics of rough structural planes in sandstone under constant shear rate

  • 摘要: 为了探究岩石粗糙结构面的动态剪切力学响应以及损伤结构面的渗流特性:首先,采用动态恒速剪切系统对砂岩粗糙结构面开展不同剪切速率条件下的剪切力学试验,分析了剪切速率以及结构面粗糙度系数对峰值抗剪强度以及滑移特征的影响;随后,利用三维扫描技术获得动态剪切前后粗糙结构面的损伤特征,并开展不同围压条件下的损伤结构面渗流试验,探究动态剪切作用后损伤结构面的嗣后渗流特性。动态剪切试验结果表明,砂岩结构面的动态峰值抗剪强度随着剪切速率的增加而降低,而剪切速率对剪切刚度的影响规律不明显。随着剪切速率由50 mm/s增加至210 mm/s,粗糙度系数为12.43的砂岩结构面峰值抗剪强度由8.49 MPa下降至6.88 MPa。此外,在相同剪切速度条件下,砂岩结构面的动态峰值抗剪强度随着结构面粗糙度的增加而增大。损伤砂岩结构面高程分布频率均随着剪切速度的增加而下降。相同粗糙度条件下,结构面损伤程度随着剪切速率的增加总体呈上升趋势,导致裂隙开度降低,进而影响结构面的渗透性能。渗流试验结果表明,动态剪切作用后的损伤砂岩结构面水力梯度和体积流量关系符合Forchheimer方程。此外,在相同的围压条件下,损伤结构面的渗透系数随着剪切速率的增加而降低,而随着粗糙度系数的增加而升高。
  • 图  1  动力扰动诱发关键块高速滑移导通渗流通道

    Figure  1.  Dynamic disturbance induced high-speed sliding of key blocks to conduct seepage channels

    图  2  动态恒速剪切试验系统

    Figure  2.  Dynamic constant velocity shear test system

    图  3  剪切和渗流试验流程

    Figure  3.  Shear and seepage experiment procedure

    图  4  不同粗糙度系数(R0)的砂岩结构面

    Figure  4.  Sandstone structural planes with different joint roughness coefficients (R0)

    图  5  渗流试验系统

    Figure  5.  Flow test system

    图  6  典型砂岩粗糙结构面剪切应力-位移曲线

    Figure  6.  Typical shear stress-displacement curves of rough structural planes in sandstone

    图  7  剪切速率对粗糙结构面峰值抗剪强度的影响

    Figure  7.  Influence of shear velocity on the peak shearing strenght of rough structural planes

    图  8  剪切速率对粗糙结构面剪切刚度的影响

    Figure  8.  Influence of shear velocity on the shear stiffness of rough structural planes

    图  9  动态剪切条件下不同时刻砂岩结构面应变演化

    Figure  9.  Strain evolution of sandstone structural planes at different times under dynamic shear conditions

    图  10  砂岩结构面法向位移随剪切位移增加的变化趋势

    Figure  10.  Variation trend of normal displacement of sandstone structural plane with increasing shear displacement

    图  11  动态剪切后砂岩典型结构面形貌

    Figure  11.  Typical morphology of sandstone structural planes after dynamic shearing

    图  12  典型砂岩结构面剪切前后的高程变化

    Figure  12.  Changes of the surface height of typical sandstone structural planes before and after dynamic shearing

    图  13  典型砂岩结构面剪切前后的坡向变化

    Figure  13.  Changes of the surface aspect of typical sandstone structural planes before and after dynamic shearing

    图  14  砂岩典型损伤结构面二值化计算结果

    Figure  14.  Binary calculation results of sandstone typical damage structural planes

    图  15  结构面表面退化率与剪切速率的关系

    Figure  15.  Relationship between surface degradation ratio and shear velocity

    图  16  典型损伤结构面水力梯度J随体积流量Q的变化

    Figure  16.  Relationship between hydraulic gradient J and volumetric flow rate Q in typical damaged structural planes

    图  17  系数ab随剪切速率增加变化趋势

    Figure  17.  Variation trends of coefficients a and b with increasing shear velocity

    图  18  3 MPa围压下剪切速度和粗糙度系数对损伤结构面临界雷诺数的影响

    Figure  18.  Influence of shearing velocity v and joint roughness coefficient R0 on the critical Reynolds number Rec of damaged structural surfaces under confining pressure of 3 MPa

    图  19  不同剪切速率和粗糙度耦合下损伤砂岩结构面渗透系数演化

    Figure  19.  Transmissivity evolution of damaged sandstone structural planes under different shear rates and roughness coupling

    表  1  砂岩物理力学特性

    Table  1.   Physical and mechanical properties of sandstone

    密度/(g·cm−3) 波速/(m·s−1) 抗压强度/MPa 弹性模量/GPa 粘聚力/MPa 内摩擦角/(°)
    2.439 3472 98.53 10.13 12.22 40.34
    下载: 导出CSV

    表  2  动态剪切试验结果

    Table  2.   Dynamic shear test results

    试样 R0 v/(mm·s−1) τ/MPa kτ/MPa sτ/mm Ra 试样 R0 v/(mm·s−1) τ/MPa kτ/MPa sτ/mm Ra
    A-V1 8.87 50 6.24 2.19 7.87 8.49 C-V1 15.60 50 8.95 4.01 9.90 14.20
    A-V2 8.87 90 6.06 2.65 7.75 8.2 C-V2 15.60 90 8.24 3.47 8.84 13.35
    A-V3 8.87 130 5.61 2.66 11.88 8.02 C-V3 15.60 130 7.22 4.62 7.96 12.85
    A-V4 8.87 170 5.47 2.48 7.81 7.64 C-V4 15.60 170 7.19 3.41 8.01 12.34
    A-V5 8.87 210 5.16 2.17 8.82 7.19 C-V5 15.60 210 6.89 3.57 10.90 11.80
    B-V1 12.43 50 8.49 2.66 10.13 11.48 D-V1 18.38 50 10.37 3.37 9.23 16.26
    B-V2 12.43 90 7.76 2.96 7.87 11.27 D-V2 18.38 90 9.41 4.04 7.85 15.37
    B-V3 12.43 130 7.60 3.51 7.79 10.83 D-V3 18.38 130 8.52 3.27 7.67 15.02
    B-V4 12.43 170 7.14 3.18 8.02 10.26 D-V4 18.38 170 8.34 4.34 8.74 14.20
    B-V5 12.43 210 6.88 3.16 9.79 9.57 D-V5 18.38 210 7.81 3.45 10.96 13.52
     注:v为剪切速度,τ为平均抗剪强度,kτ为平均剪切刚度,sτ为最终剪切位移,Ra为剪切后平均结构面粗糙度系数.
    下载: 导出CSV
  • [1] FENG X T, YANG C X, KONG R, et al. Excavation-induced deep hard rock fracturing: methodology and applications [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(1): 1–34. DOI: 10.1016/j.jrmge.2021.12.003.
    [2] DONG L J, SUN D Y, LI X B, et al. Interval non-probabilistic reliability of surrounding jointed rockmass considering microseismic loads in mining tunnels [J]. Tunnelling and Underground Space Technology, 2018, 81: 326–335. DOI: 10.1016/j.tust.2018.06.034.
    [3] 程坦, 郭保华, 孙杰豪, 等. 非规则岩石节理峰值剪切试验与强度经验公式研究 [J]. 岩石力学与工程学报, 2022, 41(1): 93–105. DOI: 10.13722/j.cnki.jrme.2021.0364.

    CHENG T, GUO B H, SUN J H, et al. A strength empirical formula of irregular rock joints based on peak shear test [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 93–105. DOI: 10.13722/j.cnki.jrme.2021.0364.
    [4] 谢和平. 深部岩体力学与开采理论研究进展 [J]. 煤炭学报, 2019, 44(5): 1283–1305. DOI: 10.13225/j.cnki.jccs.2019.6038.

    XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. DOI: 10.13225/j.cnki.jccs.2019.6038.
    [5] LI Y Z, SU G S, LIU X G, et al. Laboratory study of the effects of grouted rebar bolts on shear failure of structural planes in deep hard rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 162: 105308. DOI: 10.1016/j.ijrmms.2022.105308.
    [6] 赵延林, 万文, 王卫军, 等. 随机形貌岩石节理剪切数值模拟和非线性剪胀模型 [J]. 岩石力学与工程学报, 2013, 32(8): 1666–1676.

    ZHAO Y L, WAN W, WANG W J, et al. Shear numerical simulation of random morphology rock joint and nonlinear shear dilatancy model [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1666–1676.
    [7] ZHANG L W, WU J, ZHANG X Y. Mechanism of water inrush from the tunnel face induced by fault and its application [J]. Journal of Central South University, 2023, 30(3): 934–946. DOI: 10.1007/s11771-023-5283-y.
    [8] RONG G, YANG J, CHENG L, et al. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process [J]. Journal of Hydrology, 2016, 541: 1385–1394. DOI: 10.1016/j.jhydrol.2016.08.043.
    [9] WITHERSPOON P A, WANG J S Y, IWAI K, et al. Validity of cubic law for fluid flow in a deformable rock fracture [J]. Water Resources Research, 1980, 16(6): 1016–1024. DOI: 10.1029/WR016i006p01016.
    [10] LI P, CAI M F. Challenges and new insights for exploitation of deep underground metal mineral resources [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3478–3505. DOI: 10.1016/S1003-6326(21)65744-8.
    [11] 王明洋, 徐天涵, 邓树新, 等. 深部硐室长期稳定性的两个力学问题 [J]. 爆炸与冲击, 2021, 41(7): 071101. DOI: 10.11883/bzycj-2021-0023.

    WANG M Y, XU T H, DENG S X, et al. Mechanical problems for the long-term stability of rocks surrounding deep level underground tunnels [J]. Explosion and Shock Waves, 2021, 41(7): 071101. DOI: 10.11883/bzycj-2021-0023.
    [12] MA S L, SHIMAMOTO T, YAO L, et al. A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates [J]. Earthquake Science, 2014, 27(5): 469–497. DOI: 10.1007/s11589-014-0097-5.
    [13] 陈美多, 张祥林, 袁良柱, 等. 岩石界面的动态剪切扩散行为 [J]. 爆炸与冲击, 2024, 44(8): 081422. DOI: 10.11883/bzycj-2023-0469.

    CHEN M D, ZHANG X L, YUAN L Z, et al. Dynamic shear diffusion behavior at rock interfaces [J]. Explosion and Shock Waves, 2024, 44(8): 081422. DOI: 10.11883/bzycj-2023-0469.
    [14] 李海波, 冯海鹏, 刘博. 不同剪切速率下岩石节理的强度特性研究 [J]. 岩石力学与工程学报, 2006, 25(12): 2435–2440. DOI: 10.3321/j.issn:1000-6915.2006.12.008.

    LI H B, FENG H P, LIU B. Study on strength behaviors of rock joints under different shearing deformation velocities [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2435–2440. DOI: 10.3321/j.issn:1000-6915.2006.12.008.
    [15] CRAWFORD A M, CURRAN J H. The influence of shear velocity on the frictional resistance of rock discontinuities [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(6): 505–515. DOI: 10.1016/0148-9062(81)90514-3.
    [16] 王刚, 张学朋, 蒋宇静, 等. 一种考虑剪切速率的粗糙结构面剪切强度准则 [J]. 岩土工程学报, 2015, 37(8): 1399–1404. DOI: 10.11779/CJGE201508006.

    WANG G, ZHANG X P, JIANG Y J, et al. New shear strength criterion for rough rock joints considering shear velocity [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1399–1404. DOI: 10.11779/CJGE201508006.
    [17] BAN L R, DU W S, ZHENG D, et al. Velocity-dependent effect on the peak shear strength of rock joints considering the distribution characteristics of contact joint surface [J]. Rock Mechanics and Rock Engineering, 2024, 57(4): 2523–2537. DOI: 10.1007/s00603-023-03690-9.
    [18] ZHANG X B, JIANG Q H, CHEN N, et al. Laboratory investigation on shear behavior of rock joints and a new peak shear strength criterion [J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3495–3512. DOI: 10.1007/s00603-016-1012-2.
    [19] HUANG S B, LIU G, LIU F, et al. Experimental investigation and strength model of rough ice-filled joints under tensile and shear loading [J]. Engineering Geology, 2023, 325: 107303. DOI: 10.1016/j.enggeo.2023.107303.
    [20] WANG F L, XIA K W, YAO W, et al. Slip behavior of rough rock discontinuity under high velocity impact: experiments and models [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104831. DOI: 10.1016/j.ijrmms.2021.104831.
    [21] TANG Z C, WONG L N Y. Influences of normal loading rate and shear velocity on the shear behavior of artificial rock joints [J]. Rock Mechanics and Rock Engineering, 2016, 49(6): 2165–2172. DOI: 10.1007/s00603-015-0822-y.
    [22] 袁伟, 李建春. 剪切速率对平直节理摩擦行为的影响及其机制研究 [J]. 岩石力学与工程学报, 2021, 40(S2): 3241–3252. DOI: 10.13722/j.cnki.jrme.2021.0225.

    YUAN W, LI J C. Study on the effects and its mechanism of shear rate on friction of planar joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3241–3252. DOI: 10.13722/j.cnki.jrme.2021.0225.
    [23] XIONG X B, LI B, JIANG Y J, et al. Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1292–1302. DOI: 10.1016/j.ijrmms.2011.09.009.
    [24] WANG C S, JIANG Y J, LIU R C, et al. Experimental study of the nonlinear flow characteristics of fluid in 3D rough-walled fractures during shear process [J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2581–2604. DOI: 10.1007/s00603-020-02068-5.
    [25] 马利遥, 胡斌, 陈勇, 等. 不同渗透水压下完整泥页岩剪切-渗流特性研究 [J]. 岩土力学, 2022, 43(9): 2515–2524. DOI: 10.16285/j.rsm.2021.2013.

    MA L Y, HU B, CHEN Y, et al. Shear-seepage properties of intact argillaceous shale under different injection water pressures [J]. Rock and Soil Mechanics, 2022, 43(9): 2515–2524. DOI: 10.16285/j.rsm.2021.2013.
    [26] WANG Z Y, ZHANG Q, ZHANG W Q. A novel collaborative study of abnormal roof water inrush in coal seam mining based on strata separation and wing crack initiation [J]. Engineering Failure Analysis, 2022, 142: 106762. DOI: 10.1016/j.engfailanal.2022.106762.
    [27] 夏才初, 喻强锋, 钱鑫, 等. 常法向刚度条件下岩石节理剪切-渗流特性试验研究 [J]. 岩土力学, 2020, 41(1): 57–66, 77. DOI: 10.16285/j.rsm.2018.2275.

    XIA C C, YU Q F, QIAN X, et al. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness [J]. Rock and Soil Mechanics, 2020, 41(1): 57–66, 77. DOI: 10.16285/j.rsm.2018.2275.
    [28] 蒋宇静, 王刚, 李博, 等. 岩石节理剪切渗流耦合试验及分析 [J]. 岩石力学与工程学报, 2007, 26(11): 2253–2259. DOI: 10.3321/j.issn:1000-6915.2007.11.011.

    JIANG Y J, WANG G, LI B, et al. Experimental study and analysis of shear-flow coupling behaviors of rock joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2253–2259. DOI: 10.3321/j.issn:1000-6915.2007.11.011.
    [29] HUANG N, LIU R C, JIANG Y J. Numerical study of the geometrical and hydraulic characteristics of 3D self-affine rough fractures during shear [J]. Journal of Natural Gas Science and Engineering, 2017, 45: 127–142. DOI: 10.1016/j.jngse.2017.05.018.
    [30] 蔚立元, 杨瀚清, 王晓琳, 等. 循环剪切作用下三维粗糙裂隙非线性渗流特性数值模拟研究 [J]. 岩土力学, 2023, 44(9): 2757–2766. DOI: 10.16285/j.rsm.2022.1524.

    YU L Y, YANG H Q, WANG X L, et al. Numerical study on nonlinear hydraulic properties of three-dimensional rough joints under cyclic shear conditions [J]. Rock and Soil Mechanics, 2023, 44(9): 2757–2766. DOI: 10.16285/j.rsm.2022.1524.
    [31] KOYAMA T, NERETNIEKS I, JING L. A numerical study on differences in using Navier-Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1082–1101. DOI: 10.1016/j.ijrmms.2007.11.006.
    [32] 杜守继, 职洪涛, 周枝华. 岩石节理剪切过程中应力与渗流特性的数值模拟 [J]. 岩石力学与工程学报, 2008, 27(12): 2473–2481. DOI: 10.3321/j.issn:1000-6915.2008.12.012.

    DU S J, ZHI H T, ZHOU Z H. Numerical simulation of stress and seepage properties of rock joint during shearing processes [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2473–2481. DOI: 10.3321/j.issn:1000-6915.2008.12.012.
    [33] ZHOU J Q, WANG M, WANG L C, et al. Emergence of nonlinear laminar flow in fractures during shear [J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3635–3643. DOI: 10.1007/s00603-018-1545-7.
    [34] 刘日成, 尹乾, 杨瀚清, 等. 恒定法向刚度边界条件下三维粗糙节理面循环剪切力学特性 [J]. 岩石力学与工程学报, 2021, 40(6): 1092–1109. DOI: 10.13722/j.cnki.jrme.2020.1128.

    LIU R C, YIN Q, YANG H Q, et al. Cyclic shear mechanical properties of 3D rough joint surfaces under constant normal stiffness (CNS) boundary conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1092–1109. DOI: 10.13722/j.cnki.jrme.2020.1128.
    [35] 王培涛, 黄浩, 张博, 等. 基于3D打印的粗糙结构面模型表征及渗流特性试验研究 [J]. 岩土力学, 2024, 45(3): 725–736. DOI: 10.16285/j.rsm.2023.0875.

    WANG P T, HUANG H, ZHANG B, et al. Characterization of rough fracture model and the seepage characteristics based on 3D printing technology [J]. Rock and Soil Mechanics, 2024, 45(3): 725–736. DOI: 10.16285/j.rsm.2023.0875.
    [36] JAVADI M, SHARIFZADEH M, SHAHRIAR K, et al. Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes [J]. Water Resources Research, 2014, 50(2): 1789–1804. DOI: 10.1002/2013WR01461.
    [37] KOMVOPOULOS K, YE N. Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies [J]. Journal of Tribology, 2001, 123(3): 632–640. DOI: 10.1115/1.1327583.
    [38] LI T, ZHANG Q, YIN Q, et al. Experimental study on the nonlinear flow characteristics of fractured granite after high-temperature cycling [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9: 50. DOI: 10.1007/s40948-023-00578-4.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  11
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-01
  • 修回日期:  2025-01-20
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回