On the influence of after-burning effect on implosion characteristics at different energy release rates
-
摘要: 为研究爆轰产物后燃烧效应对封闭空间毁伤特性的影响,提出了一种基于能量守恒原理的后燃烧能量简化计算方法,开展了内爆毁伤效应模拟。以无后燃烧效应工况为基准,分别采用恒定速率和线性增加速率加载2种能量模式,分析了速度、超压等关键载荷参数的差异。研究发现:后燃烧效应显著增强内爆毁伤特性,且能量加载速率模式对毁伤效应产生差异化影响。在恒定速率加载模式下,速度增幅达42.67%,加速度显著提升,增幅达71.21%;冲击波超压峰值增大74.42%,准静态压力增幅达74.95%,动能呈现212%的跨越式增长。相较于线性增加速率加载方式,恒定速率加载模式对内爆特性参数的增强效应更显著,所提出的后燃烧能量计算方法可有效模拟密闭空间内爆毁伤的动态响应特性,可为抗爆结构设计及评估提供更精确的后燃烧效应模拟方法。Abstract: A closed space model was constructed using steel plates to examine the influence of afterburning energy load generated by explosive detonation products on the damage characteristics of confined space. Additionally, the quasi-static pressure in the confined space was simplified by applying the energy conservation law. Relying on the adiabatic index of the mixture of detonation products and air, as well as the complete afterburning degree of detonation products, a simulation method for the afterburning effect was proposed. This method was used to calculate the afterburning energy of detonation products and determine the beginning and ending times of the afterburning effect. The numerical simulation of implosion ruin in a confined space was carried out by this method. The implosion simulation considering the afterburning energy load was performed by employing two simulation methods: constant reaction rate and linearly increasing reaction rate. The results were compared with the implosion simulation results without considering the afterburning effect. The influence and degree of change of the afterburning effect on the implosion damage characteristics were analyzed. It is found that the afterburning effect with different reaction rates has a significant influence on the detonation damage characteristics, except for the temperature, in confined spaces. Moreover, the enhancement effect of the constant reaction rate is the most significant. It increased the velocity and acceleration loads under implosion in the confined space by 42.67% and 71.21%, respectively. The overpressure and quasi-static pressure were increased by 74.42% and 74.95%, respectively, and the kinetic energy was increased by approximately 212%. The proposed simulation method for the afterburning effect can better simulate the dynamic response of implosion ruin in confined spaces and provides a more accurate simulation method of the afterburning effect for the design and evaluation of explosion-proof structures.
-
Key words:
- afterburning effect /
- confined space /
- damage characteristics /
- quasi-static pressure
-
表 2 结构/空气网格划分比对计算精度的影响
Table 2. Influence of grid division ratio on calculation accuracy
试验 算法 网格
尺寸比挠度 耗时/
min试验值/mm 模拟值/mm 误差/% 5 S-ALE 1∶0.8 69 68.0543 1.371 200 1∶1 68.1495 1.233 160 1∶1.5 68.1991 1.161 117 1∶2 68.0122 1.432 107 表 3 空气材料参数
Table 3. Material parameters of air
密度/(kg·m−3) C0/kPa C1/Pa C2/Pa C3/Pa C4 C5 C6 1.29 -101.332 0 0 0 0.4 0.4 0 表 1 试验复现算法评估
Table 1. Algorithm evaluation via experimental reproduction
试验 算法 靶板挠度 耗时/
min试验值/mm[33] 模拟值/mm 误差/% 3 ALE 79 74.42 5.80 212 S-ALE 77.95 1.33 165 5 ALE 69 72.01 4.36 216 S-ALE 68.15 1.23 160 表 4 TNT材料参数
Table 4. Material parameters of TNT
密度/(kg·m−3) 爆速/(m·s−1) A/GPa B/GPa R1 R2 ω E/(MJ·m−3) 1630 6930 373.77 3.7471 4.15 0.9 0.35 7.147 表 5 不同网格密度的冲击波误差
Table 5. Shock wave overpressure errors with different grid densities
当量/kg λ 平均误差/% 当量/kg λ 平均误差/% 55 3 13.73 55 5 8.87 135 11.36 135 9.26 320 11.01 320 9.46 508 11 508 9.2 55 4 10.55 55 6 7.9 135 8.71 135 10.3 320 9.15 320 8.96 508 8.89 508 9.48 表 6 绝热指数误差分析表
Table 6. Adiabatic index error analysis table
炸药当量/g γ 文献[30] 本文 绝对误差 相对误差/% 7.5 1.354 1.3545 0.0005 0.04 11.25 1.350 1.3529 0.0029 0.21 15 1.348 1.3503 0.0023 0.17 22.5 1.345 1.3466 0.0016 0.12 30 1.344 1.3453 0.0013 0.10 表 7 TNT爆轰产物与燃点温度
Table 7. TNT detonation products and ignition temperature
爆轰产物 反应方程 燃点温度/K C C+O2→CO2 975 CO CO+0.5O2→CO2 880 H2 H2+0.5O2→H2O 850 CH4 CH4+2O2→CO2+2H2O 850 表 8 不同当量后燃烧能量对比
Table 8. Comparison of combustion energy for different equivalents
炸药当量/g 后燃烧能量kJ/g 能量差值kJ/g 文献[30] 本文 7.5 10.474 10.423 0.051 11.25 8.929 9.068 0.139 15 7.739 7.851 0.112 22.5 6.981 6.881 0.1 30 5.988 5.861 0.127 表 9 不同内爆方式下的准静态压力
Table 9. Quasi-static pressures under different implosion modes
测点 准静态压力/kPa 后燃烧 恒定速率后燃烧 线性增加速率后燃烧 1 119.6 158.9 141.2 2 90.1 157.7 141.2 3 80.9 161.9 140.6 4 82.7 165.2 140.5 表 10 不同内爆方式下的测点速度峰值
Table 10. Peak velocities of measuring points under different implosion modes
测点 测点加速度峰值/(m·s−1) 无后燃烧 恒定速率后燃烧 线性增加速率后燃烧 1 833.95 3283.86 833.95 2 1247.00 2668.66 1247.00 3 1702.24 2933.10 1702.24 4 756.47 3426.99 757.60 5 833.68 3080.01 833.68 6 1247.26 2216.63 1247.27 表 11 不同内爆方式下的测点加速度峰值
Table 11. Peak acceleration of measuring points under different implosion modes
测点 测点加速度峰值/(km·s2) 无后燃烧 恒定速率后燃烧 线性增加速率后燃烧 1 756.73 6448.36 1202.08 2 1053.43 7646.64 855.02 3 1933.97 7990.35 1784.83 4 853.85 2469.58 968.77 5 3130.58 2048.69 3090.53 6 2186.04 5693.24 5360.57 表 12 迭代步数对测点超压峰值计算结果的影响
Table 12. Influences of iteration step on calculated peak overpressures at measuring points
迭代步数 超压峰值/MPa 超压误差/% 计算耗时/min 资源消耗/GB 25 1.208 79.80% 16 10.5 50 4.108 31.29% 17 16.4 100 4.567 23.62% 18 28.2 200 6.352 6.24% 22 51.7 -
[1] AMES R G, DROTAR J T, SILBER J, et al. Quantitative distinction between detonation and afterburn energy deposition using pressure-time histories in enclosed explosions [C]//Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006: 253–262. [2] HOUIM R W. A simplified burn model for simulating explosive effects and afterburning [J]. Shock Waves, 2021, 31(8): 851–875. DOI: 10.1007/s00193-021-01054-2. [3] KUHL A L, OPPENHEIM A K, FERGUSON R E, et al. Effects of confinement on combustion of TNT explosion products in air [C]//28th International Symposium on Combustion. Edinburgh: UNT Digital Library, 2000: 3–25. [4] KUHL A L, BELL J B, BECKNER V E, et al. Numerical simulations of thermobaric explosions [C]//37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe: Lawrence Livermore National Lab, 2007. [5] KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001. [6] EDRI I, FELDGUN V R, KARINSKI Y S, et al. On blast pressure analysis due to a partially confined explosion: Ⅲ. afterburning effect [J]. International Journal of Protective Structures, 2012, 3(3): 311–331. DOI: 10.1260/2041-4196.3.3.311. [7] EDRI I, FELDGUN V R, KARINSKI Y S, et al. Afterburning aspects in an internal TNT explosion [J]. International Journal of Protective Structures, 2013, 4(1): 97–116. DOI: 10.1260/2041-4196.4.1.97. [8] EDRI I, FELDGUN V R, KARINSKI Y S, et al. The blast load acting on a structure in an internal explosion scenario [C]//Structures Conference 2018: Blast, Impact Loading, and Response; and Research and Education. Fort Worth: ASCE, 2018: 362–375. DOI: 10.1061/9780784481349.035. [9] EDRI I E, GRISARO H Y, YANKELEVSKY D Z. TNT equivalency in an internal explosion event [J]. Journal of Hazardous Materials, 2019, 374: 248–257. DOI: 10.1016/j.jhazmat.2019.04.043. [10] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001. [11] DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2. [12] CAO W, HE Z, CHEN W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method [J]. Shock Waves, 2014, 24(6): 619–624. DOI: 10.1007/s00193-014-0527-2. [13] CAO W, HE Z Q, CHEN W H. Experimental and numerical study on the afterburning effect of TNT [J]. Materials Science Forum, 2014, 767: 46–51. DOI: 10.4028/www.scientific.net/MSF.767.46. [14] HE Z Q, CAO W, CHEN W H, et al. Experimental study on afterburning effect of TNT [C]//LI S, NIU P. 9th International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Beijing: Science Press Beijing, 2011: 20-23. [15] SIROTKIN F V, YOH J J. Modeling of afterburning from the particle hydrodynamics of explosive product interface motion [J]. Journal of Mechanical Science and Technology, 2014, 28(11): 4781–4787. DOI: 10.1007/s12206-014-1045-y. [16] ZHOU H, ZHENG C, YUE X S, et al. TNT equivalency method in confined space based on steel plate deformation [J]. International Journal of Impact Engineering, 2023, 178: 104587. DOI: 10.1016/j.ijimpeng.2023.104587. [17] ZHOU H, YUE X S, ZHENG C, et al. Dynamic behavior of steel plates subjected to confined blast loading considering afterburning effect [J]. International Journal of Impact Engineering, 2024, 188: 104934. DOI: 10.1016/j.ijimpeng.2024.104934. [18] KIM H J, HWANG K, YOON Y H, et al. Numerical analysis of the effect of afterburning on damage to the concrete structure under interior explosion [J]. International Journal of Concrete Structures and Materials, 2022, 16(1): 6. DOI: 10.1186/s40069-022-00497-w. [19] 钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007. [20] 钟巍, 田宙. 考虑产物化学反应影响的约束爆炸准静态压力数值计算方法 [J]. 爆炸与冲击, 2013, 33(S1): 78–83.ZHONG W, TIAN Z. Numerical calculation of quasi-static pressures of confined explosions considering chemical reactions kinetic of detonation products [J]. Explosion and Shock Waves, 2013, 33(S1): 78–83. DOI: CNKI:SUN:BZCJ.0.2013-S1-014. [21] 钟巍, 田宙, 赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算 [J]. 爆炸与冲击, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.ZHONG W, TIAN Y, ZHAO Y. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products [J]. Explosion and Shock Waves, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08. [22] 徐维铮, 吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律 [J]. 中国舰船研究, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.XU W Z, WU W G. Afterburning effect on blast load in confined space [J]. Chinese Journal of Ship Research, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263. [23] 徐维铮, 吴卫国, 况正. 内爆炸后燃烧反应率时间历程理论预估及能量释放常数确定方法 [J]. 中国舰船研究, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.XU W Z, WU W G, KUANG Z. Method for theoretically predicting time history of afterburning reaction rate of internal explosion and determining energy release constant [J]. Chinese Journal of Ship Research, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338. [24] 徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究 [J]. 中国舰船研究, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.XU W Z, WU W G. Study on theoretical calculation of quasi-static pressure for explosion in confined space [J]. Chinese Journal of Ship Research, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368. [25] 徐维铮, 吴卫国. 考虑后燃烧效应密闭空间内爆炸场数值计算研究 [J]. 含能材料, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.XU W Z, WU W G. Study on numerical calculation of explosion field in closed space considering after-burning effects [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248. [26] 辛春亮, 徐更光, 刘科种, 等. 考虑后燃烧效应的TNT空气中爆炸的数值模拟 [J]. 含能材料, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.XING C L, XU G G, LIU K Z, et al. Numerical simulation of TNT explosion with post-detonation burning effect in air [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011. [27] 孔祥韶, 徐敬博, 徐维铮, 等. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.KONG X S, XU J B, XU W Z, et al. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015. [28] 孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.KONG X S, KUANG Z, ZHENG C, et al. Experimental study of afterburning enhancement effect for blast load in confined compartment space [J]. Acta Armamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009. [29] 孔祥韶, 王子棠, 况正, 等. 密闭空间内爆炸载荷抑制效应实验研究 [J]. 爆炸与冲击, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.KONG X S, WANG Z T, KUANG Z, et al. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion and Shock Waves, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193. [30] 岳学森, 周沪, 孔祥韶, 等. 舱室内爆载荷燃烧增强效应试验及仿真研究 [J]. 中国舰船研究, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.YUE X S, ZHOU H, KONG X S, et al. Experimental and simulation study of afterburning effect for blast load in confined cabin [J]. Chinese Journal of Ship Research, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708. [31] 徐敬博, 卢安格, 周沪, 等. 封闭空间内爆载荷下结构响应试验及仿真研究 [J]. 舰船科学技术, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.XU J B, LU A G, ZHOU H, et al. Experimental and simulation research on structural response under blast load in confined space [J]. Ship Science and Technology, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006. [32] 周沪, 孔祥韶, 罗峰, 等. 基于结构响应的舱室内爆TNT等效方法 [J]. 中国舰船研究, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.ZHOU H, KONG X S, LUO F, et al. TNT equivalency method in confined cabin based on structural response [J]. Chinese Journal of Ship Research, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484. [33] 王芳, 冯顺山, 俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究 [J]. 中国安全科学学报, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.WANG F, FENG S S, YU W M. Study on large plastic deformation response of target plate under explosive blast wave [J]. China Safety Science Journal, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016. [34] U. S. Army Corps of Engineers. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. US: Air Force Civil Engineer Support Agency, 2014. -