• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

不同速率后燃烧效应对内爆特性的影响

郭强 刘寅东

郭强, 刘寅东. 不同速率后燃烧效应对内爆特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0442
引用本文: 郭强, 刘寅东. 不同速率后燃烧效应对内爆特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0442
GUO Qiang, LIU Yindong. On the influence of after-burning effect on implosion characteristics at different energy release rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0442
Citation: GUO Qiang, LIU Yindong. On the influence of after-burning effect on implosion characteristics at different energy release rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0442

不同速率后燃烧效应对内爆特性的影响

doi: 10.11883/bzycj-2024-0442
详细信息
    作者简介:

    郭 强(1996- ),男,博士研究生,guoqiangds@dlmu.edu.cn

    通讯作者:

    刘寅东(1964- ),男,博士,教授,cblyd1964@dlmu.edu.cn

  • 中图分类号: O389

On the influence of after-burning effect on implosion characteristics at different energy release rates

  • 摘要: 为研究爆轰产物后燃烧效应对封闭空间毁伤特性的影响,提出了一种基于能量守恒原理的后燃烧能量简化计算方法,开展了内爆毁伤效应模拟。以无后燃烧效应工况为基准,分别采用恒定速率和线性增加速率加载2种能量模式,分析了速度、超压等关键载荷参数的差异。研究发现:后燃烧效应显著增强内爆毁伤特性,且能量加载速率模式对毁伤效应产生差异化影响。在恒定速率加载模式下,速度增幅达42.67%,加速度显著提升,增幅达71.21%;冲击波超压峰值增大74.42%,准静态压力增幅达74.95%,动能呈现212%的跨越式增长。相较于线性增加速率加载方式,恒定速率加载模式对内爆特性参数的增强效应更显著,所提出的后燃烧能量计算方法可有效模拟密闭空间内爆毁伤的动态响应特性,可为抗爆结构设计及评估提供更精确的后燃烧效应模拟方法。
  • 图  1  结构和炸点位置示意图

    Figure  1.  Schematic diagram of structure and explosion-point location

    图  2  靶板和空气域模型

    Figure  2.  A model for target plate and air domain

    图  3  空中爆炸冲击波传播过程

    Figure  3.  Propagation process of shock wave in air explosion

    图  4  不同测点处的超压时程曲线

    Figure  4.  Overpressure time history curves at different measuring points

    图  5  网格密度对冲击波超压的影响

    Figure  5.  Effect of grid density on the shock wave overpressure

    图  6  内爆冲击波传播过程

    Figure  6.  Propagation process of the implosion shock wave

    图  7  密闭空间内爆温度变化曲线

    Figure  7.  Temperature variation curves of implosion in the confined space

    图  8  后燃烧效应对温度特性的影响

    Figure  8.  Influences of afterburning effect on temperature characteristics

    图  9  不同速率后燃烧效应对超压特性的影响

    Figure  9.  Effect of afterburning with different reaction rates on overpressure characteristics

    图  10  不同速率后燃烧效应对速度特性的影响

    Figure  10.  Effect of afterburning with different reaction rates on velocity characteristics

    图  11  不同速率后燃烧效应对加速度特性的影响

    Figure  11.  Effect of afterburning with different reaction rates on the acceleration characteristics

    图  12  不同速率后燃烧效应对动能特性的影响

    Figure  12.  Effect of afterburning with different reaction rates on the kinetic energy characteristics

    图  13  不同模拟方式对内爆超压特性的影响

    Figure  13.  Effects of different simulation methods on the implosion overpressure characteristics

    表  2  结构/空气网格划分比对计算精度的影响

    Table  2.   Influence of grid division ratio on calculation accuracy

    试验 算法 网格
    尺寸比
    挠度 耗时/
    min
    试验值/mm 模拟值/mm 误差/%
    5 S-ALE 1∶0.8 69 68.0543 1.371 200
    1∶1 68.1495 1.233 160
    1∶1.5 68.1991 1.161 117
    1∶2 68.0122 1.432 107
    下载: 导出CSV

    表  3  空气材料参数

    Table  3.   Material parameters of air

    密度/(kg·m−3)C0/kPaC1/PaC2/PaC3/PaC4C5C6
    1.29-101.3320000.40.40
    下载: 导出CSV

    表  1  试验复现算法评估

    Table  1.   Algorithm evaluation via experimental reproduction

    试验 算法 靶板挠度 耗时/
    min
    试验值/mm[33] 模拟值/mm 误差/%
    3ALE7974.425.80212
    S-ALE77.951.33165
    5ALE6972.014.36216
    S-ALE68.151.23160
    下载: 导出CSV

    表  4  TNT材料参数

    Table  4.   Material parameters of TNT

    密度/(kg·m−3)爆速/(m·s−1)A/GPaB/GPaR1R2ωE/(MJ·m−3)
    16306930373.773.74714.150.90.357.147
    下载: 导出CSV

    表  5  不同网格密度的冲击波误差

    Table  5.   Shock wave overpressure errors with different grid densities

    当量/kg λ 平均误差/% 当量/kg λ 平均误差/%
    55 3 13.73 55 5 8.87
    135 11.36 135 9.26
    320 11.01 320 9.46
    508 11 508 9.2
    55 4 10.55 55 6 7.9
    135 8.71 135 10.3
    320 9.15 320 8.96
    508 8.89 508 9.48
    下载: 导出CSV

    表  6  绝热指数误差分析表

    Table  6.   Adiabatic index error analysis table

    炸药当量/gγ
    文献[30]本文绝对误差相对误差/%
    7.51.3541.35450.00050.04
    11.251.3501.35290.00290.21
    151.3481.35030.00230.17
    22.51.3451.34660.00160.12
    301.3441.34530.00130.10
    下载: 导出CSV

    表  7  TNT爆轰产物与燃点温度

    Table  7.   TNT detonation products and ignition temperature

    爆轰产物 反应方程 燃点温度/K
    C C+O2→CO2 975
    CO CO+0.5O2→CO2 880
    H2 H2+0.5O2→H2O 850
    CH4 CH4+2O2→CO2+2H2O 850
    下载: 导出CSV

    表  8  不同当量后燃烧能量对比

    Table  8.   Comparison of combustion energy for different equivalents

    炸药当量/g后燃烧能量kJ/g能量差值kJ/g
    文献[30]本文
    7.510.47410.4230.051
    11.258.9299.0680.139
    157.7397.8510.112
    22.56.9816.8810.1
    305.9885.8610.127
    下载: 导出CSV

    表  9  不同内爆方式下的准静态压力

    Table  9.   Quasi-static pressures under different implosion modes

    测点准静态压力/kPa
    后燃烧恒定速率后燃烧线性增加速率后燃烧
    1119.6158.9141.2
    290.1157.7141.2
    380.9161.9140.6
    482.7165.2140.5
    下载: 导出CSV

    表  10  不同内爆方式下的测点速度峰值

    Table  10.   Peak velocities of measuring points under different implosion modes

    测点测点加速度峰值/(m·s−1)
    无后燃烧恒定速率后燃烧线性增加速率后燃烧
    1833.953283.86833.95
    21247.002668.661247.00
    31702.242933.101702.24
    4756.473426.99757.60
    5833.683080.01833.68
    61247.262216.631247.27
    下载: 导出CSV

    表  11  不同内爆方式下的测点加速度峰值

    Table  11.   Peak acceleration of measuring points under different implosion modes

    测点测点加速度峰值/(km·s2)
    无后燃烧恒定速率后燃烧线性增加速率后燃烧
    1756.736448.361202.08
    21053.437646.64855.02
    31933.977990.351784.83
    4853.852469.58968.77
    53130.582048.693090.53
    62186.045693.245360.57
    下载: 导出CSV

    表  12  迭代步数对测点超压峰值计算结果的影响

    Table  12.   Influences of iteration step on calculated peak overpressures at measuring points

    迭代步数超压峰值/MPa超压误差/%计算耗时/min资源消耗/GB
    251.20879.80%1610.5
    504.10831.29%1716.4
    1004.56723.62%1828.2
    2006.3526.24%2251.7
    下载: 导出CSV
  • [1] AMES R G, DROTAR J T, SILBER J, et al. Quantitative distinction between detonation and afterburn energy deposition using pressure-time histories in enclosed explosions [C]//Proceedings of the 13th International Detonation Symposium. Norfolk: Office of Naval Research, 2006: 253–262.
    [2] HOUIM R W. A simplified burn model for simulating explosive effects and afterburning [J]. Shock Waves, 2021, 31(8): 851–875. DOI: 10.1007/s00193-021-01054-2.
    [3] KUHL A L, OPPENHEIM A K, FERGUSON R E, et al. Effects of confinement on combustion of TNT explosion products in air [C]//28th International Symposium on Combustion. Edinburgh: UNT Digital Library, 2000: 3–25.
    [4] KUHL A L, BELL J B, BECKNER V E, et al. Numerical simulations of thermobaric explosions [C]//37th International Annual Conference Energetic Materials Characterisation and Performance of Advanced Systems. Karlsruhe: Lawrence Livermore National Lab, 2007.
    [5] KUHL A L, REICHENBACH H. Combustion effects in confined explosions [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291–2298. DOI: 10.1016/j.proci.2008.05.001.
    [6] EDRI I, FELDGUN V R, KARINSKI Y S, et al. On blast pressure analysis due to a partially confined explosion: Ⅲ. afterburning effect [J]. International Journal of Protective Structures, 2012, 3(3): 311–331. DOI: 10.1260/2041-4196.3.3.311.
    [7] EDRI I, FELDGUN V R, KARINSKI Y S, et al. Afterburning aspects in an internal TNT explosion [J]. International Journal of Protective Structures, 2013, 4(1): 97–116. DOI: 10.1260/2041-4196.4.1.97.
    [8] EDRI I, FELDGUN V R, KARINSKI Y S, et al. The blast load acting on a structure in an internal explosion scenario [C]//Structures Conference 2018: Blast, Impact Loading, and Response; and Research and Education. Fort Worth: ASCE, 2018: 362–375. DOI: 10.1061/9780784481349.035.
    [9] EDRI I E, GRISARO H Y, YANKELEVSKY D Z. TNT equivalency in an internal explosion event [J]. Journal of Hazardous Materials, 2019, 374: 248–257. DOI: 10.1016/j.jhazmat.2019.04.043.
    [10] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [11] DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2.
    [12] CAO W, HE Z, CHEN W. Experimental study and numerical simulation of the afterburning of TNT by underwater explosion method [J]. Shock Waves, 2014, 24(6): 619–624. DOI: 10.1007/s00193-014-0527-2.
    [13] CAO W, HE Z Q, CHEN W H. Experimental and numerical study on the afterburning effect of TNT [J]. Materials Science Forum, 2014, 767: 46–51. DOI: 10.4028/www.scientific.net/MSF.767.46.
    [14] HE Z Q, CAO W, CHEN W H, et al. Experimental study on afterburning effect of TNT [C]//LI S, NIU P. 9th International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Beijing: Science Press Beijing, 2011: 20-23.
    [15] SIROTKIN F V, YOH J J. Modeling of afterburning from the particle hydrodynamics of explosive product interface motion [J]. Journal of Mechanical Science and Technology, 2014, 28(11): 4781–4787. DOI: 10.1007/s12206-014-1045-y.
    [16] ZHOU H, ZHENG C, YUE X S, et al. TNT equivalency method in confined space based on steel plate deformation [J]. International Journal of Impact Engineering, 2023, 178: 104587. DOI: 10.1016/j.ijimpeng.2023.104587.
    [17] ZHOU H, YUE X S, ZHENG C, et al. Dynamic behavior of steel plates subjected to confined blast loading considering afterburning effect [J]. International Journal of Impact Engineering, 2024, 188: 104934. DOI: 10.1016/j.ijimpeng.2024.104934.
    [18] KIM H J, HWANG K, YOON Y H, et al. Numerical analysis of the effect of afterburning on damage to the concrete structure under interior explosion [J]. International Journal of Concrete Structures and Materials, 2022, 16(1): 6. DOI: 10.1186/s40069-022-00497-w.
    [19] 钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.

    ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380. DOI: 10.3969/j.issn.1001-1455.2013.04.007.
    [20] 钟巍, 田宙. 考虑产物化学反应影响的约束爆炸准静态压力数值计算方法 [J]. 爆炸与冲击, 2013, 33(S1): 78–83.

    ZHONG W, TIAN Z. Numerical calculation of quasi-static pressures of confined explosions considering chemical reactions kinetic of detonation products [J]. Explosion and Shock Waves, 2013, 33(S1): 78–83. DOI: CNKI:SUN:BZCJ.0.2013-S1-014.
    [21] 钟巍, 田宙, 赵阳. 考虑约束爆炸后产物发生化学反应的约束空间内准静态温度计算 [J]. 爆炸与冲击, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.

    ZHONG W, TIAN Y, ZHAO Y. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products [J]. Explosion and Shock Waves, 2015, 35(6): 777–784. DOI: 10.11883/1001-1455(2015)06-0777-08.
    [22] 徐维铮, 吴卫国. 后燃烧效应对约束空间内爆炸载荷的影响规律 [J]. 中国舰船研究, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.

    XU W Z, WU W G. Afterburning effect on blast load in confined space [J]. Chinese Journal of Ship Research, 2019, 14(1): 52–58. DOI: 10.19693/j.issn.1673-3185.01263.
    [23] 徐维铮, 吴卫国, 况正. 内爆炸后燃烧反应率时间历程理论预估及能量释放常数确定方法 [J]. 中国舰船研究, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.

    XU W Z, WU W G, KUANG Z. Method for theoretically predicting time history of afterburning reaction rate of internal explosion and determining energy release constant [J]. Chinese Journal of Ship Research, 2019, 14(4): 22–29. DOI: 10.19693/j.issn.1673-3185.01338.
    [24] 徐维铮, 吴卫国. 密闭空间内爆炸准静态压力理论计算研究 [J]. 中国舰船研究, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.

    XU W Z, WU W G. Study on theoretical calculation of quasi-static pressure for explosion in confined space [J]. Chinese Journal of Ship Research, 2019, 14(5): 124–130. DOI: 10.19693/j.issn.1673-3185.01368.
    [25] 徐维铮, 吴卫国. 考虑后燃烧效应密闭空间内爆炸场数值计算研究 [J]. 含能材料, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.

    XU W Z, WU W G. Study on numerical calculation of explosion field in closed space considering after-burning effects [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 661–670. DOI: 10.11943/CJEM2018248.
    [26] 辛春亮, 徐更光, 刘科种, 等. 考虑后燃烧效应的TNT空气中爆炸的数值模拟 [J]. 含能材料, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.

    XING C L, XU G G, LIU K Z, et al. Numerical simulation of TNT explosion with post-detonation burning effect in air [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.
    [27] 孔祥韶, 徐敬博, 徐维铮, 等. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究 [J]. 兵工学报, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.

    KONG X S, XU J B, XU W Z, et al. Numerical study of influence of afterburning effect on blast load in confined cabin [J]. Acta Armamentarii, 2019, 40(4): 799–806. DOI: 10.3969/j.issn.1000-1093.2019.04.015.
    [28] 孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.

    KONG X S, KUANG Z, ZHENG C, et al. Experimental study of afterburning enhancement effect for blast load in confined compartment space [J]. Acta Armamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.
    [29] 孔祥韶, 王子棠, 况正, 等. 密闭空间内爆炸载荷抑制效应实验研究 [J]. 爆炸与冲击, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.

    KONG X S, WANG Z T, KUANG Z, et al. Experimental study on the mitigation effects of confined-blast loading [J]. Explosion and Shock Waves, 2021, 41(6): 062901. DOI: 10.11883/bzycj-2020-0193.
    [30] 岳学森, 周沪, 孔祥韶, 等. 舱室内爆载荷燃烧增强效应试验及仿真研究 [J]. 中国舰船研究, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.

    YUE X S, ZHOU H, KONG X S, et al. Experimental and simulation study of afterburning effect for blast load in confined cabin [J]. Chinese Journal of Ship Research, 2023, 18(4): 223–232. DOI: 10.19693/j.issn.1673-3185.02708.
    [31] 徐敬博, 卢安格, 周沪, 等. 封闭空间内爆载荷下结构响应试验及仿真研究 [J]. 舰船科学技术, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.

    XU J B, LU A G, ZHOU H, et al. Experimental and simulation research on structural response under blast load in confined space [J]. Ship Science and Technology, 2024, 46(10): 34–42. DOI: 10.3404/j.issn.1672-7649.2024.10.006.
    [32] 周沪, 孔祥韶, 罗峰, 等. 基于结构响应的舱室内爆TNT等效方法 [J]. 中国舰船研究, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.

    ZHOU H, KONG X S, LUO F, et al. TNT equivalency method in confined cabin based on structural response [J]. Chinese Journal of Ship Research, 2024, 19(3): 86–95. DOI: 10.19693/j.issn.1673-3185.03484.
    [33] 王芳, 冯顺山, 俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究 [J]. 中国安全科学学报, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.

    WANG F, FENG S S, YU W M. Study on large plastic deformation response of target plate under explosive blast wave [J]. China Safety Science Journal, 2003, 13(3): 58–61. DOI: 10.3969/j.issn.1003-3033.2003.03.016.
    [34] U. S. Army Corps of Engineers. Structures to resist the effects of accidental explosions: UFC 3-340-02 [R]. US: Air Force Civil Engineer Support Agency, 2014.
  • 加载中
图(13) / 表(12)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  16
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2025-01-18
  • 网络出版日期:  2025-01-21

目录

    /

    返回文章
    返回