• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于板厚补偿的不同型号钢制靶板在舱内爆炸载荷作用下的等效方法

郑成 朱业飞 徐峰 卢安格 曹宇航 周沪 孔祥韶

郑成, 朱业飞, 徐峰, 卢安格, 曹宇航, 周沪, 孔祥韶. 基于板厚补偿的不同型号钢制靶板在舱内爆炸载荷作用下的等效方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0446
引用本文: 郑成, 朱业飞, 徐峰, 卢安格, 曹宇航, 周沪, 孔祥韶. 基于板厚补偿的不同型号钢制靶板在舱内爆炸载荷作用下的等效方法[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0446
ZHENG Cheng, ZHU Yefei, XU Feng, LU Ange, CAO Yuhang, ZHOU Hu, KONG Xiangshao. Equivalent method of different grades of steel target plates under blast loads in the cabin based on plate thickness compensation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0446
Citation: ZHENG Cheng, ZHU Yefei, XU Feng, LU Ange, CAO Yuhang, ZHOU Hu, KONG Xiangshao. Equivalent method of different grades of steel target plates under blast loads in the cabin based on plate thickness compensation[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0446

基于板厚补偿的不同型号钢制靶板在舱内爆炸载荷作用下的等效方法

doi: 10.11883/bzycj-2024-0446
基金项目: 国家自然科学基金(12202329,52171318);武汉市自然科学基金探索计划(晨光计划)(2024040801020258)
详细信息
    作者简介:

    郑 成(1991- ),男,博士,研究员,zhengchengyeep@whut.edu.cn

    通讯作者:

    孔祥韶(1983- ),男,博士,教授,kongxs@whut.edu.cn

  • 中图分类号: O383

Equivalent method of different grades of steel target plates under blast loads in the cabin based on plate thickness compensation

  • 摘要: 针对舰船结构舱内爆炸响应实验,船用特种钢材价格昂贵,极大增加试验成本,开展舱内爆炸响应实验中普通钢材替代特种钢材的等效性研究。为确定不同材料靶板之间的等效关系,基于靶板结构中心变形相似原则,考虑靶板不破的情况下,结合薄板大变形理论分析,明确了板厚度与内爆响应的关系,提出靶板材料等效替换方法。运用有限元分析软件ATUODYN对封闭空间内爆炸载荷作用在921A钢、907A钢、Q235钢、Q355钢四种不同型号钢制靶板过程进行数值仿真,得到计算结果与试验结果最大误差值为5.6%,验证了数值仿真方法的正确性。通过对数值仿真计算得到的等效板厚拟合,结合不同材料靶板等效板厚与动态屈服强度之间的经验公式,验证了所提不同型号钢制靶板在舱内爆炸载荷作用下的等效方法具有合理性和良好的适用性。为用普通船用钢材替代船用特种钢材进行舱内爆炸实验提供了理论依据和数据参考。
  • 图  1  舱内爆炸实验装置

    Figure  1.  Test device for explosion in the cabin

    图  2  1/4有限元对称模型

    Figure  2.  A 1/4 symmetric finite element model

    图  3  网格收敛性验证

    Figure  3.  Grid convergence verification

    图  4  空气域及边界条件设置

    Figure  4.  Air domain and boundary condition settings

    图  5  靶板变形云图实验结果与仿真结果对比

    Figure  5.  Comparison of target deformation cloud maps between experiment and simulation

    图  6  不同药量体积比下907A钢替换成其他材料靶板变形等效曲线

    Figure  6.  Equivalent deformation curves of 907A steel target plates replaced by other grades of steel under different charge volume ratios

    图  7  不同药量体积比下921A钢替换成其他材料靶板变形等效曲线

    Figure  7.  Equivalent deformation curves of 921A steel target plates replaced by other grades of steel under different charge volume ratios

    图  8  不同药量体积比材料等效替换关系

    Figure  8.  Equivalent substitution relationships of target materials at different charge mass-volume ratios

    图  9  计算值与换算值的结果对比

    Figure  9.  Comparison of the calculated value with the converted value

    表  1  靶板结构材料的本构参数

    Table  1.   Constitutive parameters for target plate structural materials

    靶板材料 ρ0/(kg·m−3 E/MPa μ A/MPa B/MPa n C m
    Q235[20-21] 7850 206 0.28 293.8 230.2 0.578 0.0652 0.706
    Q355[22-23] 7850 206 0.28 339.45 405 0.403 0.02 0.659
    907A[24-25] 7850 220 0.3 580 395 0.62 0.055 1.03
    921A[25-26] 7870 212 0.31 651 395 0.62 0.055 1.03
    下载: 导出CSV

    表  2  TNT炸药的JWL状态方程参数

    Table  2.   Parameters of the JWL equation of state for TNT explosive

    C1/GPaC2/GPar1r2ωD/(m·s−1)pCJ/GPa
    373.83.7474.150.9035693021
    下载: 导出CSV

    表  3  TNT炸药的装药参数

    Table  3.   Parameters for TNT explosive charges

    mTNT/g(mTNT·V−1c)/(kg·m−3)rTNT/mm
    1200.125.99
    2300.232.23
    4660.440.71
    9200.851.29
    11501.055.26
    下载: 导出CSV

    表  4  数值仿真结果与实验实测数据[12]对比

    Table  4.   Numerical simulation results compared with the experimental data[12]

    靶板材料 工况 (mTNT·V−1c)/(kg·m−3) δ/mm wexp/mm wsim/mm $ \dfrac{w_{\text{sim}} - w_{\text{exp}}}{w_{{\text{exp}}}} /{\text{%}}$
    Q235 1 0.1 2.3 56.8 54.2 −4.58
    2 0.1 3.7 33.9 35.8 5.60
    3 0.2 4.8 37.8 39.5 4.50
    下载: 导出CSV

    表  5  靶板变形计算结果

    Table  5.   Calculation results of target deformation

    α/(kg·m−3) Q235 Q355 907A 921A
    δ/mm w/mm δ/mm w/mm δ/mm w/mm δ/mm w/mm
    0.1 2.0 60.6 2.0 58.8 1.0 65.2 1.0 63.5
    2.5 50.3 2.5 48.7 1.5 45.9 1.5 44.9
    3.0 42.7 3.0 40.2 2.0 38.5 2.0 37.5
    3.5 37.0 3.5 35.2 2.5 33.2 2.5 32.5
    4.0 33.2 4.0 30.8
    0.2 2.5 72.6 2.5 70.9 1.0 94.9 1.0 91.1
    3.0 61.9 3.0 60.4 1.5 67.6 1.5 65.5
    3.5 53.8 3.5 51.5 2.0 53.7 2.0 52.9
    4.0 48.1 4.0 44.9 2.5 45.5 2.5 43.8
    5.0 38.6 5.0 37.8 3.0 39.3 3.0 35.9
    0.4 3.0 104.2 3.0 102.4 2.0 88.6 2.0 85.5
    3.5 90.8 3.5 88.9 3.0 62.9 2.5 71.4
    4.0 80.1 4.0 78.8 3.5 54.8 3.0 60.1
    5.0 64.3 5.0 62.3 4.0 48.9 4.0 46.3
    6.0 48.8 6.0 46.8 5.0 40.5 5.0 38.5
    0.8 4.0 144.7 4.0 143.5 2.0 159.2 2.5 122.5
    4.5 128.2 4.5 127.4 2.5 127.9 3.0 103.8
    5.0 115.4 5.0 114.4 3.0 109.0 3.5 90.4
    6.0 96.4 6.0 94.6 4.0 83.5 4.0 80.8
    7.0 81.4 7.0 80.3 5.0 67.3 5.0 64.6
    1.0 5.0 143.7 5.5 130.2 3.0 133.2 3.0 127.5
    5.5 130.5 6.0 118.6 3.5 115.2 3.5 110.9
    6.0 119.1 6.5 109.5 4.0 101.5 4.0 98.2
    7.0 101.8 7.0 100.6 5.0 82.4 5.0 79.0
    8.0 88.0 8.0 86.7 6.0 68.8 6.0 65.9
    下载: 导出CSV

    表  6  不同的屈服强度

    Table  6.   Yield strength of different target materials

    靶材屈服强度/MPa
    Q235235
    Q355355
    907A390
    921A590
    下载: 导出CSV

    表  7  不同药量体积比和不同靶材对应的等效系数

    Table  7.   Equivalent coefficients corresponding to target materials at different charge mass-volume ratios

    α/(kg·m−3)β
    907A换成Q235907A换成Q355921A换成Q235921A换成Q355921A换成907A
    0.11.055.030.610.980.08
    0.21.065.280.641.070.10
    0.41.065.320.641.120.10
    0.81.125.880.651.160.10
    1.01.135.940.661.190.10
    下载: 导出CSV

    表  8  907A替换成Q235后靶板变形

    Table  8.   Target plate deformation after 907A steel was replaced by Q235 steel

    药量体积比/(kg/m3) 907A板厚/mm 等效系数β Q235板厚/mm 907A靶板中心变形/mm Q235靶板中心变形/mm 误差%
    0.1 1.5 1.05 2.77 45.9 46.1 0.46
    0.1 2.0 1.05 3.34 38.5 38.7 0.52
    0.1 4.0 1.05 4.00 33.2 33.4 0.60
    0.2 1.5 1.06 2.70 67.6 68.5 1.33
    0.2 2.0 1.06 3.46 53.7 54.7 1.86
    0.2 2.5 1.06 4.17 45.5 45.9 0.88
    0.4 2.0 1.06 3.65 88.6 87.5 −1.24
    0.8 2.5 1.12 4.54 127.9 127.0 −0.70
    1.0 3.0 1.13 5.40 133.2 132.9 −0.23
    下载: 导出CSV

    表  9  907A替换成Q355后靶板变形

    Table  9.   Target plate deformation after 907A steel was replaced by Q355 steel

    药量体积
    比/(kg/m3)
    907A板
    厚/mm
    等效
    系数β
    Q355板
    厚/mm
    907A靶板中
    心变形/mm
    Q355靶板中
    心变形/mm
    误差%
    0.11.55.032.6645.945.2−1.53
    0.12.05.033.1638.538.91.04
    0.14.05.033.6733.233.30.30
    0.21.55.282.6567.667.4−0.30
    0.22.05.283.3753.753.5−0.37
    0.22.55.283.9545.545.70.44
    0.42.05.323.5688.688.0−0.68
    0.82.55.884.5127.9127.8−0.08
    1.03.05.945.25133.2135.71.88
    下载: 导出CSV

    表  10  921A替换成Q235后靶板变形

    Table  10.   Target plate deformation after 921A steel was replaced by Q235 steel

    药量体积
    比/(kg/m3)
    921A板
    厚/mm
    等效
    系数β
    Q235板
    厚/mm
    921A靶板中
    心变形/mm
    Q235靶板中
    心变形/mm
    误差%
    0.1 1.5 0.61 2.84 44.9 46.6 3.79
    0.1 2.0 0.61 3.44 37.5 37.2 −0.80
    0.1 2.5 0.61 4.12 32.5 31.2 −4.00
    0.2 1.5 0.64 2.84 65.5 65.2 −0.46
    0.2 2.0 0.64 3.58 52.9 52.8 −0.19
    0.2 2.5 0.64 4.34 43.8 43.6 −0.46
    0.4 2.0 0.64 3.78 85.5 84.2 −1.52
    0.4 2.5 0.64 4.53 71.4 71.2 −0.28
    0.8 2.5 0.65 4.74 122.5 121.5 −0.82
    1.0 3.0 0.66 5.64 127.5 128.0 0.39
    下载: 导出CSV

    表  11  921A替换成Q355后靶板变形

    Table  11.   Target plate deformation after 921A steel was replaced by Q355 steel

    药量体积
    比/(kg/m3)
    921A板
    厚/mm
    等效
    系数β
    Q355板
    厚/mm
    921A靶板中
    心变形/mm
    Q355靶板中
    心变形/mm
    误差%
    0.11.50.982.7244.944.5−0.89
    0.12.00.983.2437.537.70.53
    0.12.50.983.7632.532.4−0.31
    0.21.51.072.7465.564.7−1.22
    0.22.01.073.4252.953.10.38
    0.22.51.074.1043.843.2−1.37
    0.42.01.123.7085.584.3−1.40
    0.42.51.124.4171.471.1−0.42
    0.82.51.164.70122.5122.0−0.41
    0.13.01.195.61127.5127.70.16
    下载: 导出CSV

    表  12  921A替换907A后靶板变形

    Table  12.   Target plate deformation after 921A steel was replaced by 90A steel

    药量体积
    比/(kg/m3)
    921A板
    厚/mm
    等效
    系数β
    907A板
    厚/mm
    921A靶板中
    心变形/mm
    907A靶板中
    心变形/mm
    误差%
    0.11.50.081.5744.945.10.44
    0.12.00.082.0537.539.86.13
    0.12.50.082.5532.534.14.92
    0.21.50.101.5965.565.60.15
    0.22.00.102.0652.951.7−2.28
    0.22.50.102.5843.843.90.23
    0.42.00.102.0885.585.70.23
    0.42.50.102.6171.470.6−1.12
    0.82.50.102.69122.5119.6−2.37
    1.03.00.103.15127.5127.2−0.24
    下载: 导出CSV
  • [1] 姚迪, 罗刚, 谢伟, 等. 裸装药舱内爆炸压力载荷规律研究 [J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(1): 168–173. DOI: 10.3963/j.issn.2095-3844.2019.01.033.

    YAO D, LUO G, XIE W, et al. Study on the law of explosion pressure load in bare charge chamber [J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(1): 168–173. DOI: 10.3963/j.issn.2095-3844.2019.01.033.
    [2] 李营, 李延, 刘海燕, 等. 舱内爆炸作用下固支方板的变形与破坏模式 [J]. 船舶力学, 2021, 25(7): 927–934. DOI: 10.3969/j.issn.1007-7294.2021.07.010.

    LI Y, LI Y, LIU H Y, et al. Deformation and failure modes of clamped square plates under internal blast [J]. Journal of Ship Mechanics, 2021, 25(7): 927–934. DOI: 10.3969/j.issn.1007-7294.2021.07.010.
    [3] DRAGOS J, WU C Q, OEHLERS D J. Simplification of fully confined blasts for structural response analysis [J]. Engineering Structures, 2013, 56: 312–326. DOI: 10.1016/j.engstruct.2013.05.018.
    [4] EDRI I, SAVIR Z, FELDGUN V R, et al. On blast pressure analysis due to a partially confined explosion: I. experimental studies [J]. International Journal of Protective Structures, 2011, 2(1): 1–20. DOI: 10.1260/2041-4196.2.1.1.
    [5] SALVADO F C, TAVARES A J, TEIXEIRA-DIAS F, et al. Confined explosions: the effect of compartment geometry [J]. Journal of Loss Prevention in the Process Industries, 2017, 48: 126–144. DOI: 10.1016/j.jlp.2017.04.013.
    [6] SILVESTRINI M, GENOVA B, TRUJILLO F J L. Energy concentration factor. a simple concept for the prediction of blast propagation in partially confined geometries [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4): 449–454. DOI: 10.1016/j.jlp.2009.02.018.
    [7] FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [8] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. A simplified model with lumped parameters for explosion venting simulation [J]. International Journal of Impact Engineering, 2011, 38(12): 964–975. DOI: 10.1016/j.ijimpeng.2011.08.004.
    [9] HU Y, WU C Q, LUKASZEWICZ M, et al. Characteristics of confined blast loading in unvented structures [J]. International Journal of Protective Structures, 2011, 2(1): 21–43. DOI: 10.1260/2041-4196.2.1.21.
    [10] 刘博文, 龙仁荣, 张庆明, 等. 舱内爆炸角隅汇聚反射冲击波超压特性研究 [J]. 爆炸与冲击, 2023, 43(1): 012201. DOI: 10.11883/bzycj-2022-0232.

    LIU B W, LONG R R, ZHANG Q M, et al. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin [J]. Explosion and Shock Waves, 2023, 43(1): 012201. DOI: 10.11883/bzycj-2022-0232.
    [11] 侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.

    HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.
    [12] 郑成. 舱内爆炸载荷下单层及多层层合板响应特性研究 [D]. 武汉: 武汉理工大学, 2018: 17–55. DOI: 10.27381/d.cnki.gwlgu.2018.000149.

    ZHENG C. Research on the dynamic response of single-layer and multi-layer plates under confined blast loading [D]. Wuhan: Wuhan University of Technology, 2018: 17–55. DOI: 10.27381/d.cnki.gwlgu.2018.000149.
    [13] 姚梦雷, 侯海量, 李典, 等. 舰船舱内爆炸载荷下Y形夹层板动响应及抗爆性能影响因素 [J]. 兵工学报, 2024, 45(3): 837–854. DOI: 10.12382/bgxb.2022.0761.

    YAO M L, HOU H L, LI D, et al. Dynamic response of Y-shaped sandwich plate and the influence factors of anti explosion performance under the explosion load in the warship cabin [J]. Acta Armamentarii, 2024, 45(3): 837–854. DOI: 10.12382/bgxb.2022.0761.
    [14] 王然辉, 李文胜, 杨世荣, 等. 基于易损性的目标标准化及其应用 [J]. 火力与指挥控制, 2017, 42(12): 105–110,114. DOI: 10.3969/j.issn.1002-0640.2017.12.022.

    WANG R H, LI W S, YANG S R, et al. Research on target standardization and application based on vulnerability [J]. Fire Control & Command Control, 2017, 42(12): 105–110,114. DOI: 10.3969/j.issn.1002-0640.2017.12.022.
    [15] 孔祥韶, 周沪, 郑成, 等. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究 [J]. 爆炸与冲击, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.

    KONG X S, ZHOU H, ZHENG C, et al. An equivalent calculation method for confined-blast load based on saturated response time [J]. Explosion and Shock Waves, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.
    [16] 王逸南, 张建伟, 王治, 等. 基于板厚补偿的921A钢与Q345钢靶板在截卵形弹体侵彻下的等效方法 [J]. 兵工学报, 2021, 42(11): 2465–2475. DOI: 10.3969/j.issn.1000-1093.2021.11.020.

    WANG Y N, ZHANG J W, WANG Z, et al. Equivalent method for 921A steel and Q345 steel target plates based on plate thickness compensation model under the penetration of truncated-oval nose projectile [J]. Acta Armamentarii, 2021, 42(11): 2465–2475. DOI: 10.3969/j.issn.1000-1093.2021.11.020.
    [17] 甘宏伟, 陈威, 李吉峰, 等. 加筋板架结构与均质靶板等效关系的数值分析 [J]. 四川兵工学报, 2010, 31(11): 20–22. DOI: 10.3969/j.issn.1006-0707.2010.11.007.

    GAN H W, CHEN W, LI J F, et al. Numerical analysis of the equivalent relationship between the stiffened plate frame structure and the homogeneous target plate [J]. Journal of Ordnance Equipment Engineering, 2010, 31(11): 20–22. DOI: 10.3969/j.issn.1006-0707.2010.11.007.
    [18] 宋卫东, 宁建国, 张中国, 等. 多层加筋靶板的侵彻模型与等效方法 [J]. 弹道学报, 2004, 16(3): 49–54. DOI: 10.3969/j.issn.1004-499X.2004.03.010.

    SONG W D, NING J G, ZHANG Z G, et al. Penetration model and equivalence method of multi-layered stiffened plates [J]. Journal of Ballistics, 2004, 16(3): 49–54. DOI: 10.3969/j.issn.1004-499X.2004.03.010.
    [19] 黄松. 舰船易损性分析中船用钢的等效靶研究 [D]. 太原: 中北大学, 2019: 61–70.

    HUANG S. Research on equivalent target of marine steel invulnerabilityanalysis of warship [D]. Taiyuan: North University of China, 2019: 61–70.
    [20] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
    [21] 林莉, 支旭东, 范锋, 等. Q235B钢Johnson-Cook模型参数的确定 [J]. 振动与冲击, 2014, 33(9): 153–158,172. DOI: 10.13465/J.CNKI.JVS.2014.09.028.

    LIN L, ZHI X D, FAN F, et al. Determination of parameters of Johnson-Cook models of Q235B steel [J]. Journal of Vibration and Shock, 2014, 33(9): 153–158,172. DOI: 10.13465/J.CNKI.JVS.2014.09.028.
    [22] 姜涛, 纪冲, 刘影, 等. 爆炸荷载下Q345B钢圆管结构的损伤特性研究 [J]. 兵器装备工程学报, 2021, 42(1): 224–230. DOI: 10.11809/bqzbgcxb2021.01.040.

    JIANG T, JI C, LIU Y, et al. Study on damage effect of Q345B steel pipe subjected to blast load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(1): 224–230. DOI: 10.11809/bqzbgcxb2021.01.040.
    [23] 朱昱. 基于Johnson-Cook模型的Q355B钢动态本构关系研究 [D]. 哈尔滨: 哈尔滨理工大学, 2019: 30–40.

    ZHU Y. Research on dynamic constitutive relationship of Q355B steel based on Johnson-Cook model [D]. Harbin: Harbin University of Science andTechnology, 2019: 30–40.
    [24] 李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系 [J]. 哈尔滨工程大学学报, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.

    LI Y, WANG Y, WU W G, et al. Dynamic mechanical behavior and constitutive relation of the ship-built steel 907A [J]. Journal of Harbin Engineering University, 2015, 36(1): 127–129. DOI: 10.3969/j.issn.1006-7043.201311093.
    [25] 陈继恩. 基于应力三轴度的材料失效研究 [D]. 武汉: 华中科技大学, 2012.

    CHEN J E. Research of material failure basic on stress triaxiality [D]. Wuhan: Huazhong University of Science and Technology, 2012.
    [26] 徐磊, 卢永锦. 火灾爆炸作用下921A钢力学性能及本构关系 [J]. 船舶工程, 2019, 41(1): 69–73. DOI: 10.13788/j.cnki.cbgc.2019.01.13.

    XU L, LU Y J. Mechanical properties and constitutive relation of steel 921A under effects of fire and explosion [J]. Ship Engineering, 2019, 41(1): 69–73. DOI: 10.13788/j.cnki.cbgc.2019.01.13.
    [27] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2.
    [28] ZHAO Y P. Saturated duration of rectangular pressure pulse applied to rectangular plates with finite-deflections [J]. Mechanics Research Communications, 1997, 24(6): 659–666. DOI: 10.1016/S0093-6413(97)00084-0.
    [29] ZHU L, YU T X. Saturated impulse for pulse-loaded elastic-plastic square plates [J]. International Journal of Solids and Structures, 1997, 34(14): 1709–1718. DOI: 10.1016/S0020-7683(96)00111-4.
    [30] 郑成, 孔祥韶, 周沪, 等. 全封闭舱内爆炸载荷作用下薄板变形研究 [J]. 兵工学报, 2018, 39(8): 1582–1589. DOI: 10.3969/j.issn.1000-1093.2018.08.015.

    ZHENG C, KONG X S, ZHOU H, et al. On the deformation of thin plates subjected to confined blast loading [J]. Acta Armamentarii, 2018, 39(8): 1582–1589. DOI: 10.3969/j.issn.1000-1093.2018.08.015.
  • 加载中
图(9) / 表(12)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  15
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-13
  • 修回日期:  2025-02-23
  • 网络出版日期:  2025-02-28

目录

    /

    返回文章
    返回