• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

燃爆抑制粉体及其抑制机理研究进展

周永浩 杨哲 刘欢 郑金磊 喻萍 王浩喆 党文义 于安峰

周永浩, 杨哲, 刘欢, 郑金磊, 喻萍, 王浩喆, 党文义, 于安峰. 燃爆抑制粉体及其抑制机理研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0452
引用本文: 周永浩, 杨哲, 刘欢, 郑金磊, 喻萍, 王浩喆, 党文义, 于安峰. 燃爆抑制粉体及其抑制机理研究进展[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0452
ZHOU Yonghao, YANG Zhe, LIU Huan, ZHENG Jinlei, YU Ping, WANG Haozhe, DANG Wenyi, YU Anfeng. Research progress on explosion-suppressing powders and suppressing mechanisms[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0452
Citation: ZHOU Yonghao, YANG Zhe, LIU Huan, ZHENG Jinlei, YU Ping, WANG Haozhe, DANG Wenyi, YU Anfeng. Research progress on explosion-suppressing powders and suppressing mechanisms[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0452

燃爆抑制粉体及其抑制机理研究进展

doi: 10.11883/bzycj-2024-0452
基金项目: 国家重点研发计划(2023YFE0199100);国家自然科学基金(52404272)
详细信息
    作者简介:

    周永浩(1995- ),男,博士,工程师,zhouyh.qday@sinopec.com

    通讯作者:

    于安峰(1982- ),男,博士,教授级高工,yuaf.qday@sinopec.com

  • 中图分类号: O389; X932

Research progress on explosion-suppressing powders and suppressing mechanisms

  • 摘要: 燃爆抑制技术可有效减轻事故后果,是可燃气体燃爆安全防护技术的重要环节。作为抑爆装置的核心组成,抑制剂的性能可直接影响抑制系统的可靠性。聚焦燃爆抑制领域的研究成果,对粉体抑制剂及其抑制机理进行了系统的总结和分析。基于组成方式不同,将抑制粉体分为单组分和复配粉体,其中单组分抑制粉体又可根据抑制机理的差异,分为活性粉体和惰性粉体。在文献综述部分,按照“粉体材料总体介绍-相关实验和理论研究-抑制机理归纳总结”的结构顺序进行评述。对现有研究存在的问题进行总结并对未来研究进行展望,提出对抑制性能测试过程进行规范化和标准化,强调通过化学反应动力学模拟指导材料合成,提高材料筛选效率,减少研究的盲目性。
  • 图  1  NaHCO3对火焰的抑制机理[18]

    Figure  1.  Suppression mechanism of NaHCO3 on flame[18]

    图  2  NaOH体积分数对H·和OH·自由基质量分数的影响[20]

    Figure  2.  Effect of NaOH volume fraction on H· and OH· free radical concentration[20]

    图  3  NH3和P2O5对甲烷爆炸压力的影响[25]

    Figure  3.  Effect of NH3 and P2O5 on methane explosion pressure[25]

    图  4  ABC粉剂对甲烷/煤尘复合体系燃爆的抑制机理[33]

    Figure  4.  Suppression mechanism of ABC powder on methane/coal hybrid explosion[33]

    图  5  Al(OH)3和Mg(OH)2抑制煤粉爆炸的机理[41]

    Figure  5.  Mechanism of Al(OH)3和Mg(OH)2 suppressing coal powder explosion[41]

    图  6  聚磷酸铵抑制煤尘爆炸的机理[51]

    Figure  6.  Mechanism of APP suppressing coal explosion[51]

    图  7  MPP抑制铝镁合金粉尘爆炸机理[56]

    Figure  7.  Mechanism of MPP suppressing Al-Mg powder explosion[56]

    图  8  MPP和MCA对煤尘爆炸的抑制机理[58]

    Figure  8.  Mechanisms of MPP and MCA suppressing coal explosion[58]

    图  9  CO2-海泡石粉体对甲烷爆炸的抑制机理[73]

    Figure  9.  Suppression mechanism of CO2-sepiolite powder on methane explosion[73]

    图  10  惰性气体驱动的KHCO3冷气溶胶协同抑制机理[97]

    Figure  10.  Mechanism illustration in explosion suppression of KHCO3 cold aerosol driven by inert gas[97]

    图  11  NaHCO3/沸石复合粉剂对汽油油池火的抑制机理抑制机理[107]

    Figure  11.  Suppression mechanism of NaHCO3/zeolite hybrid powder on on gasoline pool flame[107]

    图  12  MTS/APP复合粉体抑制甲烷爆炸机理[110]

    Figure  12.  Suppression mechanism of MTS/APP hybrid powder on methane explosion[110]

    图  13  KHCO3/水菱镁石复合粉剂抑制机理[113]

    Figure  13.  Suppression mechanism of KHCO3/hydromagnesite hybrid powder[113]

    图  14  NH4H2PO4改性的海藻酸钙干水对甲烷爆炸的抑制机理[126]

    Figure  14.  Suppression mechanism of calcium alginate dry water modified by NH4H2PO4 on methane explosion[126]

    图  15  聚磷酸铵凝胶改性干水对甲烷燃爆的抑制机理[127]

    Figure  15.  Suppression mechanism of ammonium polyphosphate gel dry water on methane explosion[127]

    表  1  近年来部分燃气爆炸事故

    Table  1.   Some gas explosion accidents in recent years

    时间地点原因后果
    2017.06.05山东省临沂市企业安全意识淡薄导致金誉石化中的一辆石油液化气罐车发生泄漏爆炸事故10人死亡,9人受伤
    2019.05.23韩国江原道江陵市因人为操作不当,导致储氢罐内发生氢氧混合而诱发爆炸2人死亡,6人受伤
    2021.06.13湖北省十堰市管道破裂导致天然气大量泄漏,引发爆炸事故25人死亡,138人受伤
    2023.08.21陕西省延安市人为操作不合规,导致瓦斯爆炸事故11人死亡,11人受伤
    2024.03.11安徽省谢桥煤矿防范措施不到位,引发瓦斯爆炸事故9人死亡,15人受伤
    2024.03.13河北省廊坊三河市天然气管道泄漏,导致爆炸事故7人死亡,27人受伤
    下载: 导出CSV

    表  2  4种粉体抑爆基元反应能垒和反应热[68]

    Table  2.   Energy barrier and reaction heat of elementary reaction for four powers suppressing explosion[68]

    抑制剂 编号 反应 能垒 反应热 抑制剂 编号 反应 能垒 反应热
    蒙脱石 1 Al+3OH·→Al(OH)3 84.6 −289.4 NH4H2PO4 1 PO·+H·→HPO / −27.6
    2 Ca+2OH·→Ca(OH)2 / −178.2 2 HPO+H·→H2+PO· / 548.6
    3 Mg+2OH·→Mg(OH)2 / −151.6 3 NH3·+O2→H2NO+OH· 28.9 17.1
    4 AlO+H·→Al+OH / 37.1 4 NH3·+O2→NH2·+HO2 30.6 57.5
    5 CaO+H·→Ca+OH 22.6 −98.4 5 NH3·+OH·→NH2+H2O / −10.2
    6 MgO+H·→Mg+OH 24.5 −124.6 KHCO3 1 2KHCO3→K2CO3+H2O+CO2 45.6 −12.3
    7 AlO+O·→Al+O2 / −179.4 2 K2CO3→K2O+CO2 19.9 48.3
    8 CaO+O·→Ca+O2 / −93.3 3 K2O+H2O→2KOH 21.6 −64.4
    9 MgO+O·→Mg+O2 18.9 −88.9 4 K·+O2→KO2 32.4 −19.9
    坡缕石 1 Al+3OH·→Al(OH)3 78.9 −290.2 5 K+OH→KOH / −50.4
    2 Ca+2OH·→Ca(OH)2 / −178.8 6 K·+O·→KO· 50.2 −121.3
    3 Mg+2OH·→Mg(OH)2 / −152.1 7 KO·+H·→KOH 126.9 −95.0
    4 AlO+H·→Al+OH / 37.5 8 KO·+O·→KO2 28.3 −168.6
    5 CaO+H·→Ca+OH 20.8 −98.8 9 KOH+H·→K·+H2O 39.6 −55.5
    6 MgO+H·→Mg+OH 21.6 −124.9 10 KOH+OH·→KO·+H2O 78.9 −24.4
    7 AlO+O·→Al+O2 / −179.8 11 KOH+O·→KO·+OH· 66.7 −122.4
    8 CaO+O·→Ca+O2 / −93.9
    9 MgO+O·→Mg+O2 16.8 −89.1
    下载: 导出CSV
  • [1] 林森. KHCO3冷气溶胶的甲烷抑爆特性研究 [D]. 焦作: 河南理工大学, 2021. DOI: 10.27116/d.cnki.gjzgc.2021.000085.

    LIN S. Suppression characteristics of KHCO3 cold aerosol on methane explosion [D]. Jiaozuo: Henan Polytechnic University, 2021. DOI: 10.27116/d.cnki.gjzgc.2021.000085.
    [2] 郑立刚, 王亚磊, 于水军, 等. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析 [J]. 化工学报, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.

    ZHENG L G, WANG Y L, YU S J, et al. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. CIESC Journal, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.
    [3] 王戈, 王斌, 何明国. 超细干粉灭火剂的研发应用进展 [J]. 消防技术与产品信息, 2013(9): 75–77,128.
    [4] IYA K S, WOLLOWITZ S, KASKAN W E. The mechanism of flame inhibition by sodium salts [J]. Symposium (International) on Combustion, 1975, 15(1): 329–336. DOI: 10.1016/S0082-0784(75)80308-0.
    [5] ZHENG L G, WANG Y L, YU S J, et al. The premixed methane/air explosion inhibited by sodium bicarbonate with different particle size distributions [J]. Powder technology, 2019, 354: 630–640. DOI: 10.1016/j.powtec.2019.06.034.
    [6] 王信群, 王婷, 徐海顺, 等. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸 [J]. 化工学报, 2015, 66(12): 5171–5178. DOI: 10.11949/j.issn.0438-1157.20141869.

    WANG X Q, WANG T, XU H S, et al. Modification of commercial BC dry chemical powder suppressant and experiments on suppression of methane-air explosion [J]. CIESC Journal, 2015, 66(12): 5171–5178. DOI: 10.11949/j.issn.0438-1157.20141869.
    [7] 付元鹏. 导管泄放过程中NaHCO3粉体抑制瓦斯爆炸特性研究 [D]. 焦作: 河南理工大学, 2021. DOI: 10.27116/d.cnki.gjzgc.2021.000200.

    FU Y P. Study on the gas explosion suppressed by NaHCO3 powder during ducted venting process [D]. Jiaozuo: Henan Polytechnic University, 2021. DOI: 10.27116/d.cnki.gjzgc.2021.000200.
    [8] 余明高, 付元鹏, 郑立刚, 等. 碳酸氢钠粉体对导管泄爆过程的影响 [J]. 爆炸与冲击, 2021, 41(9): 095403. DOI: 10.11883/bzycj-2020-0437.

    YU M G, FU Y P, ZHENG L G, et al. Effect of sodium bicarbonate powder on the process of ducted venting [J]. Explosion and Shock Waves, 2021, 41(9): 095403. DOI: 10.11883/bzycj-2020-0437.
    [9] LUO Z M, SU Y, CHEN X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration [J]. Fuel, 2019, 257: 116095. DOI: 10.1016/j.fuel.2019.116095.
    [10] XU M T, ZHENG L G, WANG J, et al. Effect of hydrogen fraction and initial pressure on the inhibition of methane/hydrogen/air explosions by NaHCO3 [J]. Fuel, 2024, 365: 131273. DOI: 10.1016/j.fuel.2024.131273.
    [11] JIA J Z, TIAN X Y, WANG F X. Study on the effect of KHCO3 particle size and powder spraying pressure on the methane explosion suppression characteristics of pipe networks [J]. ACS Omega, 2022, 7(36): 31974–31982. DOI: 10.1021/acsomega.2c02945.
    [12] KUANG K Q, CHOW W K, NI X M, et al. Fire suppressing performance of superfine potassium bicarbonate powder [J]. Fire and Materials, 2011, 35(6): 353–366. DOI: 10.1002/fam.1058.
    [13] CAO X Y, BI M S, REN J J, et al. Experimental research on explosion suppression affected by ultrafine water mist containing different additives [J]. Journal of Hazardous Materials, 2019, 368: 613–620. DOI: 10.1016/j.jhazmat.2019.01.006.
    [14] WILLIAMS B A, FLEMING J W. Suppression mechanisms of alkali metal compounds [C]//Halon Options Technical Working Conference. Gaithersburg, 1999.
    [15] 田莉. 受限空间内氢气/甲烷/空气混合物爆炸特性及抑爆研究 [D]. 杭州: 中国计量大学, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.

    TIAN L. Study on characteristics and suppression of hydrogen/methane/air mixture explosionin enclosed space [D]. Hangzhou: China University of Metrology, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.
    [16] MITANI T. A flame inhibition theory by inert dust and spray [J]. Combustion and Flame, 1981, 43: 243–253. DOI: 10.1016/0010-2180(81)90024-9.
    [17] CHELLIAH H K, WANIGARATHNE P C, LENTATI A M, et al. Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames [J]. Combustion and Flame, 2003, 134(3): 261–272. DOI: 10.1016/S0010-2180(03)00092-0.
    [18] ROSSER W A, INAMI S H, WISE H. The effect of metal salts on premixed hydrocarbon-air flames [J]. Combustion and Flame, 1963, 7: 107–119. DOI: 10.1016/0010-2180(63)90168-8.
    [19] DOUNIA O, VERMOREL O, POINSOT T. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles [J]. Combustion and Flame, 2018, 193: 313–326. DOI: 10.1016/j.combustflame.2018.03.033.
    [20] FAN R J, JIANG Y, LI W, et al. Investigation of the physical and chemical effects of fire suppression powder NaHCO3 addition on methane-air flames [J]. Fuel, 2019, 257: 116048. DOI: 10.1016/j.fuel.2019.116048.
    [21] 杨春丽, 刘艳, 胡玢, 等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析 [J]. 高压物理学报, 2017, 31(3): 301–308. DOI: 10.11858/gywlxb.2017.03.012.

    YANG C L, LIU Y, HU F, et al. Effect of nitrogen and water vapor on methane-air mixture explosion elementary reaction and suppression mechanism [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 301–308. DOI: 10.11858/gywlxb.2017.03.012.
    [22] 王婷, 王信群, 吕岳, 等. 超细活性及惰性粉体对甲烷/空气预混物层流火焰传播的影响 [J]. 煤炭学报, 2016, 41(7): 1720–1727. DOI: 10.13225/j.cnki.jccs.2015.1759.

    WANG T, WANG X Q, LV Y, et al. Interaction of ultrafine chemical active and inert powder with premixed laminar flame of methane-air mixtures [J]. Journal of China Coal Society, 2016, 41(7): 1720–1727. DOI: 10.13225/j.cnki.jccs.2015.1759.
    [23] 况凯骞, 王亚果, 黄鑫, 等. 改性超细粉体灭火性能模拟实验研究 [J]. 安全与环境学报, 2006, 6(2): 115–119. DOI: 10.3969/j.issn.1009-6094.2006.02.031.

    KUANG K Q, WANG Y G, HUANG X, et al. Experimental study on fire suppression effectiveness of superfine and surface treatment powder [J]. Journal of Safety and Environment, 2006, 6(2): 115–119. DOI: 10.3969/j.issn.1009-6094.2006.02.031.
    [24] 王雪燕. KHCO3复配抑爆剂抑制甲烷-空气爆炸特性研究 [D]. 重庆: 重庆大学, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.004091.

    WANG X Y. Investigation of methane-air explosion suppression by KHCO3 composite powder inhibitor [D]. Chongqing: Chongqing University, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.004091.
    [25] 罗振敏, 张江, 任军莹, 等. NH4H2PO4粉体热分解产物在瓦斯爆炸中的作用 [J]. 煤炭学报, 2017, 42(6): 1489–1495. DOI: 10.13225/j.cnki.jccs.2016.0982.

    LUO Z M, ZHANG J, REN J Y, et al. Role of thermal decomposition products of NH4H2PO4 powder in gas explosion [J]. Journal of China Coal Society, 2017, 42(6): 1489–1495. DOI: 10.13225/j.cnki.jccs.2016.0982.
    [26] 戴晓静. 磷酸二氢盐抑爆剂的制备与抑爆作用研究 [D]. 南京: 南京理工大学, 2013.

    DAI X J. Research on dihydric phosphate salt suppressant’s preparation and effects on explosion [D]. Nanjin: Nanjing University of Science and Technology, 2013.
    [27] 李睿德, 徐景德, 张延炜, 等. 喷尘压力对磷酸二氢铵分散状况及抑制甲烷爆炸影响实验研究 [J]. 华北科技学院学报, 2024, 21(1): 87–96. DOI: 10.19956/j.cnki.ncist.2024.01.013.

    LI R D, XU J D, ZHANG Y W, et al. Experimental study on the effect of dust spraying pressure on the dispersion condition of ammonium dihydrogen phosphate and the suppression of methane explosion [J]. Journal of North China Institute of Science and Technology, 2024, 21(1): 87–96. DOI: 10.19956/j.cnki.ncist.2024.01.013.
    [28] 徐景德, 李睿德, 张延炜. 磷酸二氢铵对甲烷爆炸火焰结构影响的抑爆试验研究 [J]. 华北科技学院学报, 2024, 21(2): 90–99. DOI: 10.19956/j.cnki.ncist.2024.02.013.

    XU J D, LI R D, ZHANG Y W. Experimental study on the effect of ammoniumdihydrogen phosphate on the flame structure of methane explosion based on detonation suppression [J]. Journal of North China Institute of Science and Technology, 2024, 21(2): 90–99. DOI: 10.19956/j.cnki.ncist.2024.02.013.
    [29] 文虎, 曹玮, 程方明, 等. 超细磷酸铵盐干粉抑制瓦斯爆炸的实验研究 [J]. 煤矿安全, 2011, 42(7): 1–3,7. DOI: 10.13347/j.cnki.mkaq.2011.07.008.

    WEN H, CAO W, CHENG F M, et al. Experiment study on ultrafine ammonium phosphate dry powder to repress gas explosion [J]. Safety in Coal Mines, 2011, 42(7): 1–3,7. DOI: 10.13347/j.cnki.mkaq.2011.07.008.
    [30] 文虎, 曹玮, 王开阔, 等. ABC干粉抑制瓦斯爆炸的实验研究 [J]. 中国安全生产科学技术, 2011, 7(6): 9–12. DOI: 10.3969/j.issn.1673-193X.2011.06.002.

    WEN H, CAO W, WANG K K, et al. Experimental study on ABC dry powder to repress gas explosion [J]. Journal of Safety Science and Technology, 2011, 7(6): 9–12. DOI: 10.3969/j.issn.1673-193X.2011.06.002.
    [31] 张宇明, 邹高万, 郜冶, 等. ABC干粉对爆炸超压的抑制 [J]. 燃烧科学与技术, 2012, 18(5): 456–460.

    ZHANG Y M, ZOU G W, GAO Y, et al. Explosion overpressure suppression by ABC powder [J]. Journal of Combustion Science and Technology, 2012, 18(5): 456–460.
    [32] 张宇明, 邹高万, 郜冶, 等. ABC干粉对爆燃火焰传播抑制实验 [J]. 哈尔滨工程大学学报, 2012, 33(4): 449–453. DOI: 10.3969/j.issn.1006-7043.201105039.

    ZHANG Y M, ZOU G W, GAO Y, et al. Experimental research on deflagration flame propagation suppression by ABC powder [J]. Journal of Harbin Engineering University, 2012, 33(4): 449–453. DOI: 10.3969/j.issn.1006-7043.201105039.
    [33] ZHAO Q, CHEN X F, YANG M J, et al. Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration [J]. Fuel, 2021, 298: 120831. DOI: 10.1016/j.fuel.2021.120831.
    [34] KORDYLEWSKI W, AMROGOWICZ J. Comparison of NaHCO3 and NH4H2PO4 effectiveness as dust explosion suppressants [J]. Combustion and Flame, 1992, 90(3/4): 344–345.
    [35] 罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理 [J]. 煤炭学报, 2016, 41(4): 876–883. DOI: 10.13225/j.cnki.jccs.2015.0922.

    LUO Z M, KANG K, REN J Y. Microscopic mechanism of NH3 on chain of methane explosion [J]. Journal of China Coal Society, 2016, 41(4): 876–883. DOI: 10.13225/j.cnki.jccs.2015.0922.
    [36] WEI L J, SU M Q, WANG K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4/polyethylene dust [J]. Fuel, 2022, 310: 122159. DOI: 10.1016/j.fuel.2021.122159.
    [37] LI M H, XU J C, LI Q, et al. Explosion mitigation of methane-air mixture in combined application of inert gas and ABC dry powders in a closed compartment [J]. Process Safety Progress, 2020, 39(2): e12101. DOI: 10.1002/prs.12101.
    [38] 覃欣欣. ABC抑爆粉剂对管道内瓦斯爆炸传播抑制的实验研究 [D]. 北京: 煤炭科学研究总院, 2016.

    TAN X X. The experimental study on the inhibition of ABC powder on gas explosion sprea in pipelines [D]. Beijing: China Coal Research Institute, 2016.
    [39] 黄子超, 司荣军, 薛少谦. 抑爆粉剂浓度及粒度对瓦斯爆炸抑制效果的影响 [J]. 中国安全生产科学技术, 2018, 14(4): 89–94. DOI: 10.11731/j.issn.1673-193x.2018.04.014.

    HUANG Z C, SI R J, XUE S Q. Influence of concentration and granularity of powder explosion suppressant on suppression effect of gas explosion [J]. Journal of Safety Science and Technology, 2018, 14(4): 89–94. DOI: 10.11731/j.issn.1673-193x.2018.04.014.
    [40] 李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析 [J]. 中国安全科学学报, 2010, 20(8): 88–92. DOI: 10.3969/j.issn.1003-3033.2010.08.014.

    LI C B. Chemical kinetics mechanism analysis of N2/CO2/H2O suppressing methane explosion [J]. China Safety Science Journal, 2010, 20(8): 88–92. DOI: 10.3969/j.issn.1003-3033.2010.08.014.
    [41] YIN H P, DAI H M, LIANG G Q. Inhibition evaluation of magnesium hydroxide, aluminum hydroxide, and hydrotalcite on the flame propagation of coal dust [J]. Process Safety and Environmental Protection, 2022, 157: 443–457. DOI: 10.1016/j.psep.2021.11.048.
    [42] 文虎, 王秋红, 罗振敏, 等. 超细Al(OH)3粉体抑制甲烷爆炸的实验研究 [J]. 西安科技大学学报, 2009, 29(4): 388–390,395. DOI: 10.13800/j.cnki.xakjdxxb.2009.04.012.

    WEN H, WANG Q H, LUO Z M, et al. Experiment on Al(OH)3 ultrafine powder suppressing methane explosion [J]. Journal of Xi’an University of Science and Technology, 2009, 29(4): 388–390,395. DOI: 10.13800/j.cnki.xakjdxxb.2009.04.012.
    [43] 王秋红. 超细金属氢氧化物粉体抑制瓦斯爆炸实验研究 [D]. 西安: 西安科技大学, 2009.

    WANG Q H. Experimental research on suppressing gas explosion by ultrafine metal hydroxide powders [D]. Xi’an: Xi’an University of Science and Technology, 2009.
    [44] MA X S, MENG X B, LI Z Y, et al. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame propagation and explosion overpressure of aluminum magnesium alloy dust [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104291. DOI: 10.1016/j.jlp.2020.104291.
    [45] 苏洋. 氢气/甲烷/空气预混气体爆燃特性及抑制规律研究 [D]. 焦作: 河南理工大学, 2018.

    SU Y. Study on the deflagration characteristics and suppression of hydrogen/methane/air premixed gas [D]. Jiaozuo: Henan Polytechnic University, 2018.
    [46] 白洁, 薛宝霞, 杨雅茹, 等. 壳聚糖/聚磷酸铵膨胀阻燃PP的阻燃及抑烟性能 [J]. 工程塑料应用, 2017, 45(7): 119–123. DOI: 10.3969/j.issn.1001-3539.2017.07.024.

    BAI J, XUE B X, YANG Y R, et al. Flame retardancy and smoke suppression of intumescent flame retardant PP with chitosan/ammonium phosphate [J]. Engineering Plastics Application, 2017, 45(7): 119–123. DOI: 10.3969/j.issn.1001-3539.2017.07.024.
    [47] 陈旬, 袁利萍, 胡云楚, 等. 聚磷酸铵和改性海泡石处理木材的阻燃抑烟作用 [J]. 中南林业科技大学学报, 2013, 33(10): 147–152. DOI: 10.14067/j.cnki.1673-923x.2013.10.005.

    CHEN X, YUAN L P, HU Y C, et al. Effects of treating woods with modified sepiolite and ammonium polyphosphate on theirs flame retardant and smoke suppression properties [J]. Journal of Central South University of Forestry & Technology, 2013, 33(10): 147–152. DOI: 10.14067/j.cnki.1673-923x.2013.10.005.
    [48] 廖家浩. 改性聚磷酸铵在环氧树脂中的阻燃抑烟性能及机理研究 [D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001103.

    LIAO J H. Research on flame retardant and smoke suppression properties and mechanism of modified ammonium polyphosphate in epoxy resin [D]. Changsha: Central South University, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001103.
    [49] ZHAO Q, CHEN X F, LI Y, et al. Suppression mechanisms of ammonium polyphosphate on methane/coal dust explosion: based on flame characteristics, thermal pyrolysis and explosion residues [J]. Fuel, 2022, 326: 125014. DOI: 10.1016/j.fuel.2022.125014.
    [50] JIANG B Y, DING D W, SU M Q, et al. Experimental study on the explosion suppression characteristics of polyethylene dust by ammonium polyphosphate [J]. Powder Technology, 2024, 437: 119491. DOI: 10.1016/j.powtec.2024.119491.
    [51] WU Y, MENG X B, SHI L, et al. Experimental study on the suppression of coal dust explosion by ammonium polyphosphate modified aerogel based on explosive solid/gas products [J]. Advanced Powder Technology, 2024, 35(3): 104364. DOI: 10.1016/j.apt.2024.104364.
    [52] 胡云楚. 硼酸锌和聚磷酸铵在木材阻燃中的成炭作用和抑烟作用 [D]. 长沙: 中南林业科技大学, 2006.

    HU Y C. Char forming and smoke suppression function of zinc borate and ammonium polyphosphate on wood during combustion [D]. Changsha: Central South University of Forestry and Technology, 2016.
    [53] SUN Y R, YUAN B H, CHEN X F, et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor [J]. Powder Technology, 2019, 343: 279–286. DOI: 10.1016/j.powtec.2018.11.026.
    [54] 员亚龙, 陈先锋, 袁必和, 等. 聚磷酸铵对糖粉火焰传播特性的影响研究 [J]. 中国安全科学学报, 2019, 29(11): 71–76. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.012.

    YUAN Y L, CHEN X F, YUAN B H, et al. Effects of ammonium polyphosphate on flame propagation characteristics of sugar dust [J]. China Safety Science Journal, 2019, 29(11): 71–76. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.012.
    [55] 李璐. 聚磷酸铵抑制PMMA粉尘爆炸特性及机理研究 [D]. 焦作: 河南理工大学, 2022. DOI: 10.27116/d.cnki.gjzgc.2022.000275.

    LI L. Study on characteristics and mechanism of APP inhibiting PMMA dust explosion [D]. Jiaozuo, Henan, China: Henan Polytechnic University, 2022. DOI: 10.27116/d.cnki.gjzgc.2022.000275.
    [56] 李珍宝, 李超, 王虎, 等. MPP抑制铝镁合金粉尘爆炸微观机理研究 [J]. 化工学报, 2023, 74(8): 3608–3614. DOI: 10.11949/0438-1157.20230598.

    LI Z B, LI C, WANG H, et al. The microscopic mechanism on MPP inhibiting explosion of Al-Mg alloy powder [J]. CIESC Journal, 2023, 74(8): 3608–3614. DOI: 10.11949/0438-1157.20230598.
    [57] 王秋红, 申中一, 王清峰. 抑制铝粉尘云爆炸的粉体材料效能对比分析 [J]. 中南大学学报(自然科学版), 2020, 51(4): 922–930. DOI: 10.11817/j.issn.1672-7207.2020.04.007.

    WANG Q H, SHEN Z Y, WANG Q F. Comparative analysis of the effectiveness of powder materials on suppressing aluminum dust cloud explosion [J]. Journal of Central South University (Science and Technology), 2020, 51(4): 922–930. DOI: 10.11817/j.issn.1672-7207.2020.04.007.
    [58] 杨振欣. 固态抑制剂对煤尘爆炸的抑制特性研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.000193.

    YANG Z X. Study on the suppression characteristics of solid state inhibitorson coal dust explosion [D]. Taiyuan: North University of China, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.000193.
    [59] 姜海鹏. 固态抑爆剂抑制铝粉尘爆炸机理研究 [D]. 大连: 大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003574.

    JIANG H P. Suppression mechanism of Al dust explosion by solid suppressants [D]. Dalian: Dalian University of Technology, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003574.
    [60] 王秋红, 闵锐, 王清峰. 3种阻燃粉体抑制锆粉云爆炸强度的效果和机理 [J]. 华南理工大学学报(自然科学版), 2020, 48(8): 72–81,90. DOI: 10.12141/j.issn.1000-565X.190344.

    WANG Q H, MIN R, WANG Q F. Inhibition effect and mechanism of three kinds of flame retardant powders on the explosion intensity of zirconium dust clouds [J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(8): 72–81,90. DOI: 10.12141/j.issn.1000-565X.190344.
    [61] 张术琳. 气固两相抑爆剂抑制铝粉尘爆炸协同规律及机理研究 [D]. 大连: 大连理工大学, 2021. DOI: 10.26991/d.cnki.gdllu.2021.004721.

    ZHANG S L. Study on the synergistic inhibition law and mechanism of gas-solid inhibitors on aluminum dust explosions [D]. Dalian: Dalian University of Technology, 2021. DOI: 10.26991/d.cnki.gdllu.2021.004721.
    [62] 张术琳, 文拙, 鲁义, 等. 煤自燃环境磷氮系抑爆剂抑制多元可燃气体爆炸机制研究 [J]. 消防科学与技术, 2024, 43(3): 398–404. DOI: 10.3969/j.issn.1009-0029.2024.03.021.

    ZHANG S L, WEN Z, LU Y, et al. Study on the mechanism of multiple combustible gas explosion suppression by phosphorus-nitrogen series explosion suppressant in coal spontaneous combustion environment [J]. Fire Science and Technology, 2024, 43(3): 398–404. DOI: 10.3969/j.issn.1009-0029.2024.03.021.
    [63] 余明高, 王天政, 游浩. 粉体材料热特性对瓦斯抑爆效果影响的研究 [J]. 煤炭学报, 2012, 37(5): 830–835. DOI: 10.13225/j.cnki.jccs.2012.05.025.

    YU M G, WANG T Z, YOU H. Study on gas explosion suppression influence of thermal properties of powder [J]. Journal of China Coal Society, 2012, 37(5): 830–835. DOI: 10.13225/j.cnki.jccs.2012.05.025.
    [64] 王天政. 超细粉体抑制管道瓦斯爆炸实验研究 [D]. 焦作: 河南理工大学, 2012.

    WANG T Z. Experimental study on the gas explosion suppression by ultrafine powder in tube [D]. Jiaozuo: Henan Polytechnic University, 2012.
    [65] 李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析 [J]. 爆炸与冲击, 2020, 40(3): 10–20. DOI: 10.11883/bzycj-2019-0090.

    LI X B, ZHANG R J, CUI L W, et al. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea [J]. Explosion and Shock Waves, 2020, 40(3): 10–20. DOI: 10.11883/bzycj-2019-0090.
    [66] 李孝斌, 张瑞杰, 孙婧雯, 等. 甲烷爆炸中尿素粉体浓度对典型自由基影响研究 [J]. 安全与环境学报, 2023, 23(4): 1093–1100. DOI: 10.13637/j.issn.1009-6094.2021.2116.

    LI X B, ZHANG R J, SUN J W, et al. Experiment of typical free radical change during urea inhibition of methane explosion [J]. Journal of Safety and Environment, 2023, 23(4): 1093–1100. DOI: 10.13637/j.issn.1009-6094.2021.2116.
    [67] 伊宏伟. 硅酸盐矿物粉体的瓦斯抑爆特性研究 [D]. 焦作: 河南理工大学, 2018.

    YI H W. Suppression characteristics of silicate mineral powders on methane explosion [D]. Jiaozuo: Henan Polytechnic University, 2018.
    [68] 王枫潇. 固态粉体对管网甲烷爆炸的抑制性能及抑爆机理研究 [D]. 阜新: 辽宁工程技术大学, 2023. DOI: 10.27210/d.cnki.glnju.2023.000017.

    WANG F X. Research on the performance of solid powder to suppress methane explosion and mechanism in pipeline network [D]. Fuxin: Liaoning University of Engineering and Technology, 2023. DOI: 10.27210/d.cnki.glnju.2023.000017.
    [69] 朱益萍, 王学刚, 聂世勇, 等. 黏土矿物材料在含铀废水处理中的应用研究进展 [J]. 水处理技术, 2019, 45(7): 13–17,29. DOI: 10.16796/j.cnki.1000-3770.2019.07.003.

    ZHU Y P, WANG X G, NIE S Y, et al. Research advances in the application of clay mineral materials on uranium-containing wastewater treatment [J]. Technology of Water Treatment, 2019, 45(7): 13–17,29. DOI: 10.16796/j.cnki.1000-3770.2019.07.003.
    [70] 刘明泉, 金盈, 李硕, 等. 改性高岭土的制备及其应用 [J]. 中国陶瓷, 2021, 57(4): 68–72. DOI: 10.16521/j.cnki.issn.1001-9642.2021.04.011.

    LIU M Q, JIN Y, LI S, et al. Preparation and application of modified kaolin clay [J]. China Ceramics, 2021, 57(4): 68–72. DOI: 10.16521/j.cnki.issn.1001-9642.2021.04.011.
    [71] 宋理想. 插层改性高岭土在聚丙烯/膨胀阻燃体系的阻燃应用及机理分析 [D]. 北京: 北京化工大学, 2017.

    SONG L X. The effect of intercalated kaolinite on the Flame retardancy of polypropylene and mechanism research [D]. Beijing: Beijing University of Chemical Technology, 2017.
    [72] 余明高, 贺涛, 李海涛, 等. 改性高岭土抑爆剂对瓦斯煤尘复合爆炸压力的影响 [J]. 煤炭学报, 2022, 47(1): 348–359. DOI: 10.13225/j.cnki.jccs.YG21.1731.

    YU M G, HE T, LI H T, et al. Influence of modified kaoline inhibitor on the explosion suppression pressure of the methane-coal dust mixture [J]. Journal of China Coal Society, 2022, 47(1): 348–359. DOI: 10.13225/j.cnki.jccs.YG21.1731.
    [73] 苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响 [J]. 化工进展, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.

    SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.
    [74] 倪小敏, 况凯骞, 杨冬雷, 等. 载铁改性沸石粉体抑制甲烷/空气扩散火焰试验研究 [J]. 中国安全科学学报, 2012, 22(1): 53–57. DOI: 10.16265/j.cnki.issn1003-3033.2012.01.008.

    NI X M, KUANG K Q, YANG D L, et al. Experimental study on the suppression of methane/air diffusion flame by iron-modified zeolite powders [J]. China Safety Science Journal, 2012, 22(1): 53–57. DOI: 10.16265/j.cnki.issn1003-3033.2012.01.008.
    [75] 王燕, 杨帅帅, 张国涛, 等. 改性沸石抑制乙烯爆炸性能及机理研究 [J]. 化工学报, 2023, 74(12): 5048–5060. DOI: 10.11949/0438-1157.20231063.

    WANG Y, YANG S S, ZHANG G T, et al. Explosion suppression characteristics and mechanism of ethylene by modified zeolite [J]. CIESC Journal, 2023, 74(12): 5048–5060. DOI: 10.11949/0438-1157.20231063.
    [76] 倪小敏, 杨冬雷, 况凯骞, 等. 溴氟丙烯/13X沸石复合粉体抑制汽油火的试验研究 [J]. 中国安全科学学报, 2011, 21(5): 53–58. DOI: 10.3969/j.issn.1003-3033.2011.05.009.

    NI X M, YANG D L, KUANG K Q, et al. Experimental study on performance of Bromotrifluoropropene/Zeolite 13x composite powders in suppressing gasoline fires [J]. China Safety Science Journal, 2011, 21(5): 53–58. DOI: 10.3969/j.issn.1003-3033.2011.05.009.
    [77] ZHANG J, MEGARIDIS C M. Soot suppression by ferrocene in laminar ethylene/air nonpremixed flames [J]. Combustion and Flame, 1996, 105(4): 528–540. DOI: 10.1016/0010-2180(95)00209-X.
    [78] TIAN K, LI Z S, STAUDE S, et al. Influence of ferrocene addition to a laminar premixed propene flame: Laser diagnostics, mass spectrometry and numerical simulations [J]. Proceedings of the Combustion Institute, 2009, 32(1): 445–452. DOI: 10.1016/j.proci.2008.05.056.
    [79] 余明高, 郝强, 段玉龙, 等. 二茂铁灭火实验平台研制与灭火有效性研究 [J]. 火灾科学, 2007, 16(2): 86–90. DOI: 10.3969/j.issn.1004-5309.2007.02.004.

    YU M G, HAO Q, DUAN Y L, et al. Development of a ferrocene fire suppression experimental platform with examination of its fire suppression effectiveness [J]. Fire Safety Science, 2007, 16(2): 86–90. DOI: 10.3969/j.issn.1004-5309.2007.02.004.
    [80] 郑凯. 二茂铁抑制管道瓦斯爆炸实验研究 [D]. 焦作: 河南理工大学, 2014.

    ZHENG K. Experiment study on gas explosion suppression based on ferrocene in ducts [D]. Jiaozuo: Henan Polytechnic University, 2014.
    [81] 蒲广梅. ABC干粉/硅藻土抑制瓦斯爆炸实验研究 [D]. 西安: 西安科技大学, 2012.

    PU G M. Experimental study on inhibiting gas explosion using ABC dry powder/diatomite powder [D]. Xi’an: Xi’an University of Science and Technology, 2012.
    [82] 程方明, 邓军, 罗振敏, 等. 硅藻土粉体抑制瓦斯爆炸的实验研究 [J]. 采矿与安全工程学报, 2010, 27(4): 604–607. DOI: 10.3969/j.issn.1673-3363.2010.04.031.

    CHENG F M, DENG J, LUO Z M, et al. Experimental study on inhibiting gas explosion using diatomite powder [J]. Journal of Mining and Safety Engineering, 2010, 27(4): 604–607. DOI: 10.3969/j.issn.1673-3363.2010.04.031.
    [83] 程方明. 超细粉体抑制甲烷-空气预混气爆炸实验研究 [D]. 西安: 西安科技大学, 2008.

    CHENG F M. Experimental research on suppressing premixed methane-air explosion by ultrafine particles [D]. Xi’an: Xi’an University of Science and Technology, 2008.
    [84] 郭秀瑞, 李宝智. 超细精制硅藻土作为载体的应用研究 [J]. 非金属矿, 2002, 25(2): 29, 10. DOI: 10.3969/j.issn.1000-8098.2002.02.010.

    GUO X R, LI B Z. Research on application of ultrafine purified diatomite in carrier [J]. Non-Metallic Mines, 2002, 25(2): 29, 10. DOI: 10.3969/j.issn.1000-8098.2002.02.010.
    [85] 何文浩, 郝朝瑜, 张亚超, 等. 硅藻土抑制瓦斯爆炸的微观机理分析 [J]. 煤炭学报, 2022, 47(10): 3695–3703. DOI: 10.13225/j.cnki.jccs.2021.1457.

    HE W H, HAO C Y, ZHANG Y C, et al. Microscopic mechanism analysis of inhibition on methane explosion by diatomite [J]. Journal of China Coal Society, 2022, 47(10): 3695–3703. DOI: 10.13225/j.cnki.jccs.2021.1457.
    [86] 余明高, 孔杰, 王燕, 等. 改性赤泥粉体抑制瓦斯爆炸的实验研究 [J]. 煤炭学报, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.

    YU M G, KONG J, WANG Y, et al. Experimental research on gas explosion suppression by modified red mud [J]. Journal of China Coal Society, 2014, 39(7): 1289–1295. DOI: 10.13225/j.cnki.jccs.2013.0847.
    [87] 李建伟. 烧结法赤泥脱碱及碱回收工艺研究 [D]. 郑州: 郑州大学, 2012.

    LI J W. The research on technology of red mud dealkalization and alkali recovery [D]. Zhengzhou: Zhengzhou University, 2012.
    [88] 孔杰. 赤泥基复合粉体抑爆材料制备及其抑爆性能实验研究 [D]. 焦作: 河南理工大学, 2014.

    KONG J. Experimental study on preparing red mad based composite powder and it’s explosion suppression performance [D]. Jiaozuo: Henan Polytechnic University, 2014.
    [89] 屈丽娜. K型、S型气溶胶抑制瓦斯爆炸实验研究 [D]. 西安: 西安科技大学, 2010.

    QU L N. Experimental research on suppressing gas explosion by K and S-type aerosol [D]. Xi’an: Xi’an University of Science and Technology, 2010.
    [90] 周文英, 任文娥, 左晶. 冷气溶胶灭火剂研究进展 [J]. 消防技术与产品信息, 2010(11): 41–46. DOI: 10.3969/j.issn.1002-784X.2010.11.015.

    ZHOU W Y, REN W E, ZUO J. Research progress in the cold aerosol fire extinguishing agent [J]. Fire Technique and Products Information, 2010(11): 41–46. DOI: 10.3969/j.issn.1002-784X.2010.11.015.
    [91] 任常兴, 张玉贤, 王婕, 等. 冷气溶胶油气环境抑爆效能研究 [J]. 消防技术与产品信息, 2018, 31(11): 57–60. DOI: 10.3969/j.issn.1002-784X.2018.11.016.

    REN C X, ZHANG Y X, WANG J, et al. Study on Explosion suppression effectiveness of cold aerosol in oil gas environment [J]. Fire Technique and Products Information, 2018, 31(11): 57–60. DOI: 10.3969/j.issn.1002-784X.2018.11.016.
    [92] 任常兴, 李晋, 张欣, 等. 超细冷气溶胶抑制油气预混爆炸实验研究 [J]. 中国安全生产科学技术, 2012, 8(10): 28–31.

    REN C X, LI J, ZHANG X, et al. Experimental research on suppressing premixed oil gas explosion by ultra-fine cold aerosol [J]. Journal of Safety Science and Technology, 2012, 8(10): 28–31.
    [93] REN C X, SUN X T, ZHANG X, et al. Research on suppressing premixed fuel-air explosion by ultra-fine cold aerosol [J]. Procedia Engineering, 2014, 84: 340–346. DOI: 10.1016/j.proeng.2014.10.442.
    [94] 黄超, 李继红. 钇稳定氧化锆气溶胶阻爆效率研究 [J]. 消防科学与技术, 2013, 32(8): 897–899,903. DOI: 10.3969/j.issn.1009-0029.2013.08.025.

    HUANG C, LI J H. Study on the explosion retardant property of ZrO2(Y2O3) nanopowder aerosol [J]. Fire Science and Technology, 2013, 32(8): 897–899,903. DOI: 10.3969/j.issn.1009-0029.2013.08.025.
    [95] KRASNYANSKY M. Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6): 729–735. DOI: 10.1016/j.jlp.2006.05.004.
    [96] 蒋新生, 杜扬, 王冬, 等. 基于超细冷气溶胶的油气爆炸抑爆剂研究 [J]. 后勤工程学院学报, 2010, 26(5): 17–21,41. DOI: 10.3969/j.issn.1672-7843.2010.05.004.

    JIANG X S, DU Y, WANG D, et al. Research of fuel-air explosion suppressant based on ultra-fine cold aerosol [J]. Journal of Logistical Engineering University, 2010, 26(5): 17–21,41. DOI: 10.3969/j.issn.1672-7843.2010.05.004.
    [97] 王燕, 林森, 李忠, 等. 惰性气体对KHCO3冷气溶胶甲烷抑爆性能的影响研究 [J]. 煤炭科学技术, 2021, 49(2): 145–152. DOI: 10.13199/j.cnki.cst.2021.02.018.

    WANG Y, LIN S, LI Z, et al. Research on synergistic effect of inert gas on methane explosion suppression performance of KHCO3 cold aerosol [J]. Coal Science and Technology, 2021, 49(2): 145–152. DOI: 10.13199/j.cnki.cst.2021.02.018.
    [98] 王燕, 林森, 李忠, 等. 喷粉压力对KHCO3冷气溶胶甲烷抑爆效果影响研究 [J]. 中国安全科学学报, 2021, 31(7): 70–75. DOI: 10.16265/j.cnki.issn1003-3033.2021.07.010.

    WANG Y, LIN S, LI Z, et al. Influence of dispersion pressure on methane explosion suppression effect of KHCO3 cold aerosol [J]. China Safety Science Journal, 2021, 31(7): 70–75. DOI: 10.16265/j.cnki.issn1003-3033.2021.07.010.
    [99] 余明高, 王雪燕, 郑凯, 等. 催化型复合粉体抑爆剂抑制瓦斯爆炸压力实验研究 [J]. 煤炭学报, 2021, 46(10): 3212–3220. DOI: 10.13225/j.cnki.jccs.2020.1096.

    YU M G, WANG X Y, ZHENG K, et al. Experimental investigation of gas explosion suppression by catalytic composite powder inhibitor [J]. Journal of China Coal Society, 2021, 46(10): 3212–3220. DOI: 10.13225/j.cnki.jccs.2020.1096.
    [100] YU M G, WANG X Y, ZHENG K, et al. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor [J]. Process Safety and Environmental Protection, 2020, 144: 337–348. DOI: 10.1016/j.psep.2020.07.050.
    [101] 王燕, 程义伸, 曹建亮, 等. 核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性 [J]. 煤炭学报, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.

    WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3 /red-mud composite powders with core-shell structure on methane explosion [J]. Journal of China Coal Society, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
    [102] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031.
    [103] 程义伸. 核-壳型赤泥基复合粉体的瓦斯抑爆特性研究 [D]. 焦作: 河南理工大学, 2017.

    CHENG Y S. Suppression characteristics of red-mud based composite powders with core-shell structure on methane explosion [D]. Jiaozuo: Henan Polytechnic University, 2017.
    [104] ZHANG Y S, WU G G, CAI L, et al. Study on suppression of coal dust explosion by superfine NaHCO3/shell powder composite suppressant [J]. Powder Technology, 2021, 394: 35–43. DOI: 10.1016/j.powtec.2021.08.037.
    [105] YANG K, CHEN K F, JI H, et al. Experimental study on the inhibition of methane/air explosion by modified attapulgite powder [J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104574. DOI: 10.1016/j.jlp.2021.104574.
    [106] LIU A H, LU X E, ZHOU X Y, et al. Experimental investigation on suppression of methane explosion using KHCO3/zeolite composite powder [J]. Powder Technology, 2023, 415: 118157. DOI: 10.1016/j.powtec.2022.118157.
    [107] NI X M, KUANG K Q, YANG D L, et al. A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core-shell structure [J]. Fire Safety Journal, 2009, 44(7): 968–975. DOI: 10.1016/j.firesaf.2009.06.004.
    [108] WANG Y, FENG H, ZHANG Y M, et al. Suppression effects of hydroxy acid modified montmorillonite powders on methane explosions [J]. Energies, 2019, 12(21): 4068. DOI: 10.3390/en12214068.
    [109] WANG Y, LIN S, FENG H, et al. Suppression of different functional group modified powders on 9.5% CH4-air explosion and molecular simulation mechanism [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104344. DOI: 10.1016/j.jlp.2020.104344.
    [110] 袁必和, 陶红吉, 孙亚如, 等. 多孔矿物-聚磷酸铵对甲烷爆炸的协同抑制研究 [J]. 中国安全科学学报, 2021, 31(3): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2021.03.006.

    YUAN B H, TAO H J, SUN Y R, et al. Study on synergistic suppression of methane explosion by porous mineral materials-ammonium polyphosphate composite powder [J]. China Safety Science Journal, 2021, 31(3): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2021.03.006.
    [111] 贺涛. 高岭土基改性/复配抑爆剂抑制瓦斯煤尘复合爆炸特性研究 [D]. 重庆: 重庆大学, 2022. DOI: 10.27670/d.cnki.gcqdu.2022.001911.

    HE T. Investigation of gas and coal dust explosion suppression by Kaolin-based modified or composite powder inhibitor [D]. Chongqing: Chongqing University, 2022. DOI: 10.27670/d.cnki.gcqdu.2022.001911.
    [112] ZHANG Y M, WANG Y, MENG X Q, et al. The suppression characteristics of NH4H2PO4/red mud composite powders on methane explosion [J]. Applied Sciences, 2018, 8(9): 1433. DOI: 10.3390/app8091433.
    [113] WANG M C, ZHOU Z J, LIANG Z L, et al. The preparation and fire extinguishing mechanism research of a novel high-efficiency KHCO3@HM dry powder [J]. Materials Today Communications, 2024, 38: 107817. DOI: 10.1016/j.mtcomm.2023.107817.
    [114] WANG Z L, GUO X X, LIU J N, et al. Experimental study on the inhibition of hydrogen deflagration by flame-retardant compounded ultrafine dry powder fire extinguishing media containing zinc hydroxystannate [J]. Renewable Energy, 2024, 228: 120644. DOI: 10.1016/j.renene.2024.120644.
    [115] DAI H M, LIANG G Q, YIN H P, et al. Experimental investigation on the inhibition of coal dust explosion by the composite inhibitor of carbamide and zeolite [J]. Fuel, 2022, 308: 121981. DOI: 10.1016/j.fuel.2021.121981.
    [116] WANG L C, LIANG Y T, HU Y, et al. Synergistic suppression effects of flame retardant, porous minerals and nitrogen on premixed methane/air explosion [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104263. DOI: 10.1016/j.jlp.2020.104263.
    [117] 左前明, 程卫民, 邹冠贵, 等. 协同增效原理在煤尘抑爆剂中的应用实验 [J]. 重庆大学学报(自然科学版), 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.

    ZUO Q M, CHENG W M, ZOU G G, et al. Applied experiments on coal dust inhibitor based on the theory of synergistic effect [J]. Journal of Chongqing University (Natural Science Edition), 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.
    [118] 汪凤祺, 汪泉, 李成孝, 等. 干水材料特点及其应用前景 [J]. 煤矿爆破, 2021, 39(2): 29–34. DOI: 10.3969/j.issn.1674-3970.2021.02.008.

    WANG F Q, WANG Q, LI C X, et al. Features and application prospect of dry water materials [J]. Coal Mine Blasting, 2021, 39(2): 29–34. DOI: 10.3969/j.issn.1674-3970.2021.02.008.
    [119] 高健强, 贺拥军, 杨惠, 等. 干水及其在灭火材料中的应用研究进展 [J]. 化工新型材料, 2021, 49(5): 43–47. DOI: 10.19817/j.cnki.issn1006-3536.2021.05.010.

    GAO J Q, HE Y J, YANG H, et al. Dry water-a new type of green and efficient fire extinguishing material [J]. New Chemical Materials, 2021, 49(5): 43–47. DOI: 10.19817/j.cnki.issn1006-3536.2021.05.010.
    [120] ZHANG T W, ZHANG S S, LIU H, et al. Experimental research on combustible gas/air explosion inhibition by dry water [J]. International Journal of Hydrogen energy, 2023, 48(93): 36605–36620. DOI: 10.1016/j.ijhydene.2023.06.053.
    [121] 卞建峰, 贺拥军, 牟国栋. 一种反相泡沫灭火材料的制备及性能研究 [J]. 武警学院学报, 2015, 31(4): 41–44. DOI: 10.3969/j.issn.1008-2077.2015.04.009.

    BIAN J F, HE Y J, MOU G D. A study on the preparation and performance of a reversed-phase foam fire suppressant [J]. Journal of Chinese People’s Armed Police Force Academy, 2015, 31(4): 41–44. DOI: 10.3969/j.issn.1008-2077.2015.04.009.
    [122] 柴国强. 含金属钠盐干水灭火材料的制备及其灭火有效性和机理研究 [D]. 徐州: 中国矿业大学, 2022. DOI: 10.27623/d.cnki.gzkyu.2022.002757.

    CHAI G Q. Study on preparation of dry water fire extinguishing materials containing alkali metal sodium salt and its effectiveness and mechanism [D]. Xuzhou: China University of Mining and Technology, 2022. DOI: 10.27623/d.cnki.gzkyu.2022.002757.
    [123] HAN Z Y, ZHANG Y P, DU Z M, et al. New-type gel dry-water extinguishants and its effectiveness [J]. Journal of Cleaner Production, 2017, 166: 590–600. DOI: 10.1016/j.jclepro.2017.08.005.
    [124] 陈先锋, 樊傲, 袁必和, 等. 干水材料对瓦斯爆燃抑制的实验研究 [J]. 爆炸与冲击, 2019, 39(11): 120–130. DOI: 10.11883/bzycj-2018-0236.

    CHEN X F, FAN A, YUAN B H, et al. Experimental study on suppression of gas deflagration by dry water materials [J]. Explosion and Shock Waves, 2019, 39(11): 120–130. DOI: 10.11883/bzycj-2018-0236.
    [125] WANG Q H, MA C, DENG J, et al. Gas explosion suppression by ammonium dihydrogen phosphate-modified dry water powder [J]. Powder Technology, 2023, 416: 118228. DOI: 10.1016/j.powtec.2023.118228.
    [126] WANG Q H, PENG B, LUO Z M, et al. Gas explosion suppression performance of modified gel-type dry waters [J]. Powder Technology, 2023, 420: 118378. DOI: 10.1016/j.powtec.2023.118378.
    [127] ZENG H, QIU D Y, LI K Y, et al. A novel gel dry water: Preparation and application in methane-air explosion [J]. Process Safety and Environmental Protection, 2024, 186: 134–150. DOI: 10.1016/j.psep.2024.03.076.
    [128] GUO X X, LIU J N, XUE S J, et al. Experimental study on suppression of hydrogen jet flame by solid-liquid two-phase composite powders containing core-shell structure [J]. Fuel, 2024, 371: 131900. DOI: 10.1016/j.fuel.2024.131900.
    [129] 李刚. 最佳阻塞比下复合粉体抑制瓦斯爆炸的尺度效应研究 [D]. 焦作: 河南理工大学, 2019. DOI: 10.27116/d.cnki.gjzgc.2019.000305.

    LI G. Experimental study on scale effect of gas explosion suppressed by composite powder under optimal blockage ratio [D]. Jiaozuo: Henan Polytechnic University, 2019. DOI: 10.27116/d.cnki.gjzgc.2019.000305.
    [130] WANG Q H, JIANG X X, DENG J, et al. Analysis of the effectiveness of Mg(OH)2/NH4H2PO4 composite dry powder in suppressing methane explosion [J]. Powder Technology, 2023, 417: 118255. DOI: 10.1016/j.powtec.2023.118255.
    [131] JI W T, YANG J J, HE J, et al. Preparation and characterization of flower-like Mg-Al hydrotalcite powder for suppressing methane explosion [J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104858. DOI: 10.1016/j.jlp.2022.104858.
    [132] LI Y, CHEN X F, YUAN B H, et al. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion [J]. Fuel, 2022, 329: 125401. DOI: 10.1016/j.fuel.2022.125401.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  21
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-06-07
  • 网络出版日期:  2025-06-10

目录

    /

    返回文章
    返回