• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

典型冰雹撞击载荷作用下T800碳纤维板的损伤特性

赵浩川 冯晓伟 刘瑶璐 李天宇 胡艳辉 谭晓军 聂源

赵浩川, 冯晓伟, 刘瑶璐, 李天宇, 胡艳辉, 谭晓军, 聂源. 典型冰雹撞击载荷作用下T800碳纤维板的损伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0453
引用本文: 赵浩川, 冯晓伟, 刘瑶璐, 李天宇, 胡艳辉, 谭晓军, 聂源. 典型冰雹撞击载荷作用下T800碳纤维板的损伤特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0453
ZHAO Haochuan, FENG Xiaowei, LIU Yaolu, LI Tianyu, HU Yanhui, TAN Xiaojun, NIE Yuan. Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0453
Citation: ZHAO Haochuan, FENG Xiaowei, LIU Yaolu, LI Tianyu, HU Yanhui, TAN Xiaojun, NIE Yuan. Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0453

典型冰雹撞击载荷作用下T800碳纤维板的损伤特性

doi: 10.11883/bzycj-2024-0453
基金项目: 国家自然科学基金(12102413)
详细信息
    作者简介:

    赵浩川(2000- ),男,硕士研究生, 603389614@qq.com

    通讯作者:

    冯晓伟(1984- ),男,博士,副研究员,414fengxw@caep.cn

  • 中图分类号: O347.3; V258

Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads

  • 摘要: 为研究民航客机用高性能碳纤维复合材料的冰雹撞击损伤特性,首先,通过试验对冰球在高速冲击下的撞击力特性进行了研究,给出了冲击力时程曲线以及峰值冲击力与冰球动能的线性增长关系;随后,对T800/3200碳纤维复合材料层合板进行单次冰球撞击,发现其损伤形态与碳纤维层合板的铺层方式有关,而损伤程度则与冰球的初速度有关,同时超声C扫描结果表明其内部层间脱黏面积与冰球撞击时的动能呈线性增长关系;最后,对相同厚度的靶板进行了冰球重复撞击试验,其宏观损伤程度随撞击次数的增加而加重,且碳纤维板中心点的挠度与冰球累积动能呈二次关系,并最终呈现前后贯穿且伴有大量纤维拔出的损伤形态。
  • 图  1  波音787的复合材料[2]

    Figure  1.  Composites in Boeing 787[2]

    图  2  60 mm冰球制备模具

    Figure  2.  Mold for preparation of 60 mm ice spheres

    图  3  冰球撞击杆试验装置

    Figure  3.  Test device of ice spheres impacting bars

    图  4  冰球弹托

    Figure  4.  Ice sphere with sabot

    图  5  撞击力时程曲线图

    Figure  5.  Impact force history curves

    图  6  高速摄影下冰球撞击金属杆过程

    Figure  6.  The process of ice spheres impacting metal rod under the high-speed camera

    图  7  初始动能与峰值冲击力关系

    Figure  7.  Relationship between initial kinetic energy and impact force peak

    图  8  冰球撞击靶板试验装置

    Figure  8.  Test device of ice spheres impacting target

    图  9  固定钢框架

    Figure  9.  Steel frame fixer

    图  10  高速摄影下冰球撞击T800/3200靶板过程

    Figure  10.  The process of ice spheres impacting T800/3200 target under the high-speed camera

    图  11  5.5 mm靶板受冰球撞击后的毁伤形态

    Figure  11.  Damage pattern of 5.5 mm thick targets after hit by ice spheres

    图  12  超声扫描结果

    Figure  12.  Results of ultrasonic C-scan

    图  13  靶板损伤面积百分比与冰球初始动能的关系

    Figure  13.  Relationship between the percentage of target damage area and the initial kinetic energy of ice sphere

    图  14  靶板损伤面积百分比与冰球峰值冲击力的关系

    Figure  14.  Relationship between the percentage of target damage area and the peak impact force of ice sphere

    图  15  第1~3次冲击后靶板的损伤情况

    Figure  15.  Damage situation of the target after 1st to 3rd impact

    图  16  第4~5次冲击后靶板的损伤情况

    Figure  16.  Damage situation of the target after 4th to 5th impact

    图  17  冰球累积动能-挠度曲线

    Figure  17.  Cumulative kinetic of ice spheres-deflection curve

    图  18  等效峰值冲击力-挠度曲线

    Figure  18.  Equivalent peak impact force-deflection curve

    表  1  冰球高速撞击金属杆试验工况

    Table  1.   Experimental conditions for the high-speed impact of ice spheres on bars

    序号 冰球质量/g 冰球速度/(m·s−1 冰球动能/J
    1 97.1 80.2 312.3
    2 100.3 128.6 829.4
    3 98.6 204.4 2059.7
    下载: 导出CSV

    表  2  冰球冲击碳纤维靶板试验工况

    Table  2.   Experimental conditions for ice spheres impacting carbon fiber plates

    序号 靶板厚度/mm 铺层方式 冰球质量/g 冰球速度/(m·s−1 初始动能/J
    15.69[45/−45/90/0/90/−45/45/90/0/90/45/−45/90/90/−45/45]s97.965.1207.5
    298.089.7394.3
    397.7108.3573.0
    498.5140.5972.2
    下载: 导出CSV

    表  3  冰球多次冲击碳纤维靶板的试验工况

    Table  3.   Experimental conditions for repeated impacts of ice spheres on carbon fiber plates

    撞击
    次数
    冰球直径/
    mm
    靶板厚度/
    mm
    冰球速度/
    (m·s−1
    冰球动能/J
    1 60 5.63 157.3 1207.8
    2 152.1 1132.1
    3 153.2 1147.0
    4 154.9 1177.2
    5 151.6 1132.1
    下载: 导出CSV

    表  4  冰球撞击后的挠度及损伤程度

    Table  4.   Deflection and damage extent after impact with ice spheres

    撞击
    次数
    冰球动能/J 靶板中心点
    挠度/mm
    损伤程度
    1 1207.8 16 轻度
    2 1132.1 50 中度
    3 1147.0 68 严重
    4 1177.2 74 完全破坏
    5 1132.1 贯穿
    下载: 导出CSV
  • [1] 刘爱平, 林仁伟, 陈壁茂. 民用飞机复合材料结构在位修理环境控制方法研究 [J]. 航空维修与工程, 2021(1): 60–62. DOI: 10.3969/j.issn.1672-0989.2021.01.022.

    LIU A P, LIN R W, CHEN B M, et al. Study on an environmental control method for in-site repair of civil aircraft composite structure [J]. Aviation Maintenance & Engineering, 2021(1): 60–62. DOI: 10.3969/j.issn.1672-0989.2021.01.022.
    [2] 宋振华. 冰载荷作用下碳纤维复合材料桁条加筋曲面板的冲击动力响应研究 [D]. 广州: 暨南大学, 2014.

    SONG Z H. The dynamic response of stringer-stiffened curved composite panels under the hail ice impact [D]. Guangzhou: Jinan University, 2014.
    [3] HOLOTIUK M, NALOBINA O, HOMON S, et al. Investigation of ice impact destruction process [J]. Procedia Structural Integrity, 2024, 59: 531–537. DOI: 10.1016/j.prostr.2024.04.075.
    [4] KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. DOI: 10.1007/s10853-006-1376-x.
    [5] MÜLLER F, BÖHM A, HERRNRING H, et al. Influence of the ice shape on ice-structure impact loads [J]. Cold Regions Science and Technology, 2024, 221: 104175. DOI: 10.1016/j.coldregions.2024.104175.
    [6] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Analysis of ice impact process at high velocity [J]. Experimental Mechanics, 2015, 55(9): 1669–1679. DOI: 10.1007/s11340-015-0067-4.
    [7] 崔一诺, 张航, 卢鹏, 等. 冰冲击荷载试验研究 [J]. 哈尔滨工程大学学报, 2022, 43(1): 25–31. DOI: 10.11990/jheu.202008048.

    CUI Y N, ZHANG H, LU P, et al. Experimental study on impact load on ice [J]. Journal of Harbin Engineering University, 2022, 43(1): 25–31. DOI: 10.11990/jheu.202008048.
    [8] GUÉGAN P, OTHMAN R, LEBRETON D, et al. Experimental investigation of the kinematics of post-impact ice fragments [J]. International Journal of Impact Engineering, 2011, 38(10): 786–795. DOI: 10.1016/j.ijimpeng.2011.05.003.
    [9] 张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.

    ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.
    [10] BURCHELL M J, HARRISS K H. Catastrophic disruption by hypervelocity impact of multi-layered spherical ice targets [J]. International Journal of Impact Engineering, 2022, 168: 104294. DOI: 10.1016/j.ijimpeng.2022.104294.
    [11] WANG Z G, ZHAO M Q, LIU K, et al. Experimental analysis and prediction of CFRP delamination caused by ice impact [J]. Engineering Fracture Mechanics, 2022, 273: 108757. DOI: 10.1016/j.engfracmech.2022.108757.
    [12] SONG Z H, LE J, WHISLER D, et al. Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact [J]. International Journal of Impact Engineering, 2018, 122: 439–450. DOI: 10.1016/j.ijimpeng.2018.09.014.
    [13] LIU X, QU J, MAO J Z, et al. Mechanical responses and damage characteristics of the high-velocity impact of ice projectiles on foam sandwich structure [J]. International Journal of Impact Engineering, 2024, 191: 104994. DOI: 10.1016/j.ijimpeng.2024.104994.
    [14] BANIK A, ZHANG C, KHAN M H, et al. Low-velocity ice impact response and damage phenomena on steel and CFRP sandwich composite [J]. International Journal of Impact Engineering, 2022, 162: 104134. DOI: 10.1016/j.ijimpeng.2021.104134.
    [15] APPLEBY-THOMAS G J, HAZELL P J, DAHINI G. On the response of two commercially-important CFRP structures to multiple ice impacts [J]. Composite Structures, 2011, 93(10): 2619–2627. DOI: 10.1016/j.compstruct.2011.04.029.
    [16] 林茜. 冰球撞击碳纤维复合材料板的试验和数值模拟研究 [D]. 宁波: 宁波大学, 2021.

    LIN Q. Experimental and numerical simulation of ice ball impact on carbon fiber composite plate [D]. Ningbo: Ningbo University, 2021.
    [17] 张晓琪. 冰弹撞击碳纤维/双马来酰亚胺的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021.

    ZHANG X Q. Damage characteristics of carbon fiber/bismaleimide impacted by ice projectile [D]. Shenyang: Shenyang Ligong University, 2021. DOI: 10.27323/d.cnki.gsgyc.2021.000321.
    [18] GAO Y B, SHI L T, LU T, et al. Ballistic and delamination mechanism of CFRP /aluminum laminates subjected to high velocity impact [J]. Engineering Fracture Mechanics, 2024, 295: 109797. DOI: 10.1016/j.engfracmech.2023.109797.
    [19] 刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 451–456. DOI: 10.11883/1001-1455(2014)04-0451-06.

    LIU J G, LI Y L, SUO T, et al. Numerical simulation of high velocity impact of composite T-joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451–456. DOI: 10.11883/1001-1455(2014)04-0451-06.
    [20] TANG E L, WANG X X, HAN Y F, et al. Damage characteristics of ice projectile impacting on CF/BMI composite target at high speed [J]. International Journal of Impact Engineering, 2022, 167: 104285. DOI: 10.1016/j.ijimpeng.2022.104285.
    [21] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, LÓPEZ-PUENTE J, et al. Numerical methodology to analyze the ice impact threat: application to composite structures [J]. Materials & Design, 2018, 141: 350–360. DOI: 10.1016/j.matdes.2017.12.044.
    [22] 王计真. 冰雹动态本构建模与验证 [J]. 航空科学技术, 2023, 34(8): 51–56. DOI: 10.19452/j.issn1007-5453.2023.08.007.

    WANG J Z. Modeling and verification of the dynamic constitutive of the hailstone [J]. Aeronautical Science & Technology, 2023, 34(8): 51–56. DOI: 10.19452/j.issn1007-5453.2023.08.007.
    [23] ZHOU Y, XUE B, GUO Y X, et al. Mechanical responses of CFRP/PVC foam sandwich plate impacted by hailstone [J]. International Journal of Impact Engineering, 2023, 178: 104631. DOI: 10.1016/j.ijimpeng.2023.104631.
    [24] TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. DOI: 10.1016/j.ijimpeng.2013.01.013.
    [25] 谭晓军, 冯晓伟, 胡艳辉, 等. 层状结构冰球的高速撞击特性试验 [J]. 爆炸与冲击, 2020, 40(11): 113301. DOI: 10.11883/bzycj-2020-0047.

    TAN X J, FENG X W, HU Y H, et al. Experimental investigation on characteristics of layered ice spheres under high-velocity impact [J]. Explosion and Shock Waves, 2020, 40(11): 113301. DOI: 10.11883/bzycj-2020-0047.
    [26] KIM H, WELCH D A, KEDWARD K T. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels [J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(1): 25–41. DOI: 10.1016/S1359-835X(02)00258-0.
    [27] Pernas-Sánchez J, Artero-Guerrero J. A, Varas D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010.
    [28] DOLATI S, FEREIDOON A, SABET A R. Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice [J]. Iranian Polymer Journal, 2014, 23(6): 477–486. DOI: 10.1007/s13726-014-0242-y.
    [29] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  8
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-01-19
  • 网络出版日期:  2025-02-25

目录

    /

    返回文章
    返回