Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads
-
摘要: 为研究民航客机用高性能碳纤维复合材料的冰雹撞击损伤特性,首先,通过试验对冰球在高速冲击下的撞击力特性进行了研究,给出了冲击力时程曲线以及峰值冲击力与冰球动能的线性增长关系;随后,对T800/3200碳纤维复合材料层合板进行单次冰球撞击,发现其损伤形态与碳纤维层合板的铺层方式有关,而损伤程度则与冰球的初速度有关,同时超声C扫描结果表明其内部层间脱黏面积与冰球撞击时的动能呈线性增长关系;最后,对相同厚度的靶板进行了冰球重复撞击试验,其宏观损伤程度随撞击次数的增加而加重,且碳纤维板中心点的挠度与冰球累积动能呈二次关系,并最终呈现前后贯穿且伴有大量纤维拔出的损伤形态。Abstract: With the deterioration of the natural climate, hail impact has become a threat that cannot be ignored by civil aircraft. To study the hail impact damage characteristics of high-performance carbon fiber composites used for civil aircraft, we first investigated the impact force characteristics of ice spheres under high-speed impact through experiments, and the impact time history curves of ice spheres under different speeds were obtained using an air cannon test system. At the same time, to make the speed range of the ice sphere more extensive, some existing experiment data are introduced as a comparison to obtain the linear growth relationship between the peak impact force and the kinetic energy of the ice sphere. Subsequently, a single ice sphere impact test was conducted on the T800/3200 carbon fiber composite laminates. It was found that the concave of the front core damage area forms a 45° angle with the boundary of the target plate, which is related to the carbon fiber layup mode, and the damage degree depends on the initial speed of the ice sphere. To further quantify the relationship between the damage degree of the laminate and the kinetic energy of the ice sphere, ultrasonic C-scanning was used to obtain the damaged area of the target plate, and the damage percentage was extracted by software analysis. The results show that the percentage of internal interlayer delamination increases linearly with the kinetic energy of the ice sphere. After that, repeated impact tests of ice spheres were carried out on the target plate with the same thickness, and as expected, the macro damage degree increased with the number of impacts. Finally, the front and back surfaces of the composite laminates were completely delaminated, resulting in a large number of fibers being pulled out and displaying a penetrating through-thickness damage pattern. The deflection of the center point of the target plate was selected as the quantitative damage index, and according to the data analysis of the measured results, it was found that there is a quadratic relationship between the deflection of the center point of the carbon fiber plate and the accumulated kinetic energy of the ice sphere. The apex of the parabola can well reflect the accumulated kinetic energy required for the target plate penetration.
-
表 1 冰球高速撞击金属杆试验工况
Table 1. Experimental conditions for the high-speed impact of ice spheres on bars
序号 冰球质量/g 冰球速度/(m·s−1) 冰球动能/J 1 97.1 80.2 312.3 2 100.3 128.6 829.4 3 98.6 204.4 2059.7 表 2 冰球冲击碳纤维靶板试验工况
Table 2. Experimental conditions for ice spheres impacting carbon fiber plates
序号 靶板厚度/mm 铺层方式 冰球质量/g 冰球速度/(m·s−1) 初始动能/J 1 5.69 [45/−45/90/0/90/−45/45/90/0/90/45/−45/90/90/−45/45]s 97.9 65.1 207.5 2 98.0 89.7 394.3 3 97.7 108.3 573.0 4 98.5 140.5 972.2 表 3 冰球多次冲击碳纤维靶板的试验工况
Table 3. Experimental conditions for repeated impacts of ice spheres on carbon fiber plates
撞击
次数冰球直径/
mm靶板厚度/
mm冰球速度/
(m·s−1)冰球动能/J 1 60 5.63 157.3 1207.8 2 152.1 1132.1 3 153.2 1147.0 4 154.9 1177.2 5 151.6 1132.1 表 4 冰球撞击后的挠度及损伤程度
Table 4. Deflection and damage extent after impact with ice spheres
撞击
次数冰球动能/J 靶板中心点
挠度/mm损伤程度 1 1207.8 16 轻度 2 1132.1 50 中度 3 1147.0 68 严重 4 1177.2 74 完全破坏 5 1132.1 — 贯穿 -
[1] 刘爱平, 林仁伟, 陈壁茂. 民用飞机复合材料结构在位修理环境控制方法研究 [J]. 航空维修与工程, 2021(1): 60–62. DOI: 10.3969/j.issn.1672-0989.2021.01.022.LIU A P, LIN R W, CHEN B M, et al. Study on an environmental control method for in-site repair of civil aircraft composite structure [J]. Aviation Maintenance & Engineering, 2021(1): 60–62. DOI: 10.3969/j.issn.1672-0989.2021.01.022. [2] 宋振华. 冰载荷作用下碳纤维复合材料桁条加筋曲面板的冲击动力响应研究 [D]. 广州: 暨南大学, 2014.SONG Z H. The dynamic response of stringer-stiffened curved composite panels under the hail ice impact [D]. Guangzhou: Jinan University, 2014. [3] HOLOTIUK M, NALOBINA O, HOMON S, et al. Investigation of ice impact destruction process [J]. Procedia Structural Integrity, 2024, 59: 531–537. DOI: 10.1016/j.prostr.2024.04.075. [4] KIM H, KEUNE J N. Compressive strength of ice at impact strain rates [J]. Journal of Materials Science, 2007, 42(8): 2802–2806. DOI: 10.1007/s10853-006-1376-x. [5] MÜLLER F, BÖHM A, HERRNRING H, et al. Influence of the ice shape on ice-structure impact loads [J]. Cold Regions Science and Technology, 2024, 221: 104175. DOI: 10.1016/j.coldregions.2024.104175. [6] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Analysis of ice impact process at high velocity [J]. Experimental Mechanics, 2015, 55(9): 1669–1679. DOI: 10.1007/s11340-015-0067-4. [7] 崔一诺, 张航, 卢鹏, 等. 冰冲击荷载试验研究 [J]. 哈尔滨工程大学学报, 2022, 43(1): 25–31. DOI: 10.11990/jheu.202008048.CUI Y N, ZHANG H, LU P, et al. Experimental study on impact load on ice [J]. Journal of Harbin Engineering University, 2022, 43(1): 25–31. DOI: 10.11990/jheu.202008048. [8] GUÉGAN P, OTHMAN R, LEBRETON D, et al. Experimental investigation of the kinematics of post-impact ice fragments [J]. International Journal of Impact Engineering, 2011, 38(10): 786–795. DOI: 10.1016/j.ijimpeng.2011.05.003. [9] 张永康, 李玉龙, 汤忠斌, 等. 冰雹撞击下泡沫铝夹芯板的动态响应 [J]. 爆炸与冲击, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232.ZHANG Y K, LI Y L, TANG Z B, et al. Dynamic response of aluminum-foam-based sandwich panels under hailstone impact [J]. Explosion and Shock Waves, 2018, 38(2): 373–380. DOI: 10.11883/bzycj-2016-0232. [10] BURCHELL M J, HARRISS K H. Catastrophic disruption by hypervelocity impact of multi-layered spherical ice targets [J]. International Journal of Impact Engineering, 2022, 168: 104294. DOI: 10.1016/j.ijimpeng.2022.104294. [11] WANG Z G, ZHAO M Q, LIU K, et al. Experimental analysis and prediction of CFRP delamination caused by ice impact [J]. Engineering Fracture Mechanics, 2022, 273: 108757. DOI: 10.1016/j.engfracmech.2022.108757. [12] SONG Z H, LE J, WHISLER D, et al. Skin-stringer interface failure investigation of stringer-stiffened curved composite panels under hail ice impact [J]. International Journal of Impact Engineering, 2018, 122: 439–450. DOI: 10.1016/j.ijimpeng.2018.09.014. [13] LIU X, QU J, MAO J Z, et al. Mechanical responses and damage characteristics of the high-velocity impact of ice projectiles on foam sandwich structure [J]. International Journal of Impact Engineering, 2024, 191: 104994. DOI: 10.1016/j.ijimpeng.2024.104994. [14] BANIK A, ZHANG C, KHAN M H, et al. Low-velocity ice impact response and damage phenomena on steel and CFRP sandwich composite [J]. International Journal of Impact Engineering, 2022, 162: 104134. DOI: 10.1016/j.ijimpeng.2021.104134. [15] APPLEBY-THOMAS G J, HAZELL P J, DAHINI G. On the response of two commercially-important CFRP structures to multiple ice impacts [J]. Composite Structures, 2011, 93(10): 2619–2627. DOI: 10.1016/j.compstruct.2011.04.029. [16] 林茜. 冰球撞击碳纤维复合材料板的试验和数值模拟研究 [D]. 宁波: 宁波大学, 2021.LIN Q. Experimental and numerical simulation of ice ball impact on carbon fiber composite plate [D]. Ningbo: Ningbo University, 2021. [17] 张晓琪. 冰弹撞击碳纤维/双马来酰亚胺的毁伤特性研究 [D]. 沈阳: 沈阳理工大学, 2021.ZHANG X Q. Damage characteristics of carbon fiber/bismaleimide impacted by ice projectile [D]. Shenyang: Shenyang Ligong University, 2021. DOI: 10.27323/d.cnki.gsgyc.2021.000321. [18] GAO Y B, SHI L T, LU T, et al. Ballistic and delamination mechanism of CFRP /aluminum laminates subjected to high velocity impact [J]. Engineering Fracture Mechanics, 2024, 295: 109797. DOI: 10.1016/j.engfracmech.2023.109797. [19] 刘建刚, 李玉龙, 索涛, 等. 复合材料T型接头冰雹高速撞击损伤的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 451–456. DOI: 10.11883/1001-1455(2014)04-0451-06.LIU J G, LI Y L, SUO T, et al. Numerical simulation of high velocity impact of composite T-joint by hailstone [J]. Explosion and Shock Waves, 2014, 34(4): 451–456. DOI: 10.11883/1001-1455(2014)04-0451-06. [20] TANG E L, WANG X X, HAN Y F, et al. Damage characteristics of ice projectile impacting on CF/BMI composite target at high speed [J]. International Journal of Impact Engineering, 2022, 167: 104285. DOI: 10.1016/j.ijimpeng.2022.104285. [21] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, LÓPEZ-PUENTE J, et al. Numerical methodology to analyze the ice impact threat: application to composite structures [J]. Materials & Design, 2018, 141: 350–360. DOI: 10.1016/j.matdes.2017.12.044. [22] 王计真. 冰雹动态本构建模与验证 [J]. 航空科学技术, 2023, 34(8): 51–56. DOI: 10.19452/j.issn1007-5453.2023.08.007.WANG J Z. Modeling and verification of the dynamic constitutive of the hailstone [J]. Aeronautical Science & Technology, 2023, 34(8): 51–56. DOI: 10.19452/j.issn1007-5453.2023.08.007. [23] ZHOU Y, XUE B, GUO Y X, et al. Mechanical responses of CFRP/PVC foam sandwich plate impacted by hailstone [J]. International Journal of Impact Engineering, 2023, 178: 104631. DOI: 10.1016/j.ijimpeng.2023.104631. [24] TIPPMANN J D, KIM H, RHYMER J D. Experimentally validated strain rate dependent material model for spherical ice impact simulation [J]. International Journal of Impact Engineering, 2013, 57: 43–54. DOI: 10.1016/j.ijimpeng.2013.01.013. [25] 谭晓军, 冯晓伟, 胡艳辉, 等. 层状结构冰球的高速撞击特性试验 [J]. 爆炸与冲击, 2020, 40(11): 113301. DOI: 10.11883/bzycj-2020-0047.TAN X J, FENG X W, HU Y H, et al. Experimental investigation on characteristics of layered ice spheres under high-velocity impact [J]. Explosion and Shock Waves, 2020, 40(11): 113301. DOI: 10.11883/bzycj-2020-0047. [26] KIM H, WELCH D A, KEDWARD K T. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels [J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(1): 25–41. DOI: 10.1016/S1359-835X(02)00258-0. [27] Pernas-Sánchez J, Artero-Guerrero J. A, Varas D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010. [28] DOLATI S, FEREIDOON A, SABET A R. Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice [J]. Iranian Polymer Journal, 2014, 23(6): 477–486. DOI: 10.1007/s13726-014-0242-y. [29] PERNAS-SÁNCHEZ J, ARTERO-GUERRERO J A, VARAS D, et al. Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates [J]. International Journal of Impact Engineering, 2016, 96: 1–10. DOI: 10.1016/j.ijimpeng.2016.05.010. -