Effect of joint dip angle and inter-hole parameters on blasting crack propagation in layered rock mass
-
摘要: 针对层状岩体隧道采用钻爆法施工过程中,爆炸能量分布不平衡易引起严重的超欠挖,以节理倾角和孔间延时及孔间距为主要影响参数,采用分层浇筑的方法制备了不同节理角度的模拟岩体试样,开展了层状岩体爆破试验,基于ABAQUS模拟软件,分析了层状岩体在不同节理倾角下爆破裂纹扩展及应力波传播特性。结果表明:节理倾角对应力波传播具有显著的导向作用,通过影响应力分布导致不同位置峰值应变及损伤程度的差异,进而促使裂纹在节理面处或炮孔周围扩展。孔间延时对裂纹扩展路径具有关键调控作用,随着延时增大,先爆孔与后爆孔的应力波叠加区域由节理中心逐渐向后爆孔周围转移,导致节理中心峰值应变与损伤值先增后减,岩体破坏区域相应向后爆孔偏移;但延时过长会削弱双孔应力波的协同效应。孔间距增大将减弱节理中心的应力叠加,使能量集中于炮孔周边,裂纹扩展模式从节理贯通转向孔周放射状分布;而过大的孔间距则因能量衰减与应力叠加不足,易导致孔间裂纹贯通失效,显著降低岩体破碎效率。Abstract: In the construction process of drilling and blasting method for layered rock tunnel, the unbalanced distribution of explosion energy was easy to cause serious over- and under-excavation. The joint dip angle, inter-hole delay, and hole spacing were the main influencing parameters. The simulated rock mass samples with different joint dip angles were prepared by the layered pouring method, and the blasting test of layered rock mass was carried out. Based on the ABAQUS simulation software, the blasting crack propagation and stress wave propagation characteristics of layered rock mass under different joint dip angles were analyzed. The results show that the joint dip angle has a significant guiding effect on the stress wave propagation. By affecting the stress distribution, the peak strain and damage degree at different positions are different, which in turn promotes the crack propagation at the joint surface or around the blast hole. The inter-hole delay plays a key role in regulating the crack propagation path. With the increase of delay time, the stress wave superposition area of the pre-blasting hole and the post-blasting hole gradually shifts from the joint center to the surrounding of the post-blasting hole, resulting in the peak strain and damage value of the joint center increasing first and then decreasing, and the failure area of the rock mass shifts to the post-blasting hole accordingly. However, too long delay weakens the synergistic effect of the double-hole stress wave. The increase of hole spacing weakens the stress superposition in the center of the joint, so that the energy is concentrated around the borehole, and the crack propagation mode changes from joint penetration to radial distribution around the borehole. However, too large a hole spacing is easy to lead to the failure of crack penetration between holes due to insufficient energy attenuation and stress superposition, which significantly reduces the crushing efficiency of rock mass. The research results are helpful to the understanding of blasting crack propagation in layered rock mass.
-
Key words:
- layered rock mass /
- inter-hole delay /
- hole spacing /
- joint dip angle /
- stress wave
-
表 1 试验设计方案
Table 1. Test design schemes
工况 节理倾角/(°) 孔间距/mm 围压 孔间延时/ms σx/MPa σy/MPa 1 30 200 1.0 0.5 0 45 60 90 2 45 200 1.0 0.5 0 5 10 15 3 45 175 1.0 0.5 0 200 225 -
[1] 高启栋, 靳军, 王亚琼, 等. 孔内起爆位置对爆破振动场分布的影响作用规律 [J]. 爆炸与冲击, 2021, 41(10): 105201. DOI: 10.11883/bzycj-2020-0352.GAO Q D, JIN J, WANG Y Q, et al. Acting law of in-hole initiation position on distribution of blast vibration field [J]. Explosion and Shock Waves, 2021, 41(10): 105201. DOI: 10.11883/bzycj-2020-0352. [2] 张凯, 陶铁军, 田兴朝, 等. 节理岩体隧道爆破周边孔分区布设方法与应用研究 [J]. 爆破, 2024, 41(4): 107–115,121. DOI: 10.3963/j.issn.1001-487X.2024.04.013.ZHANG K, TAO T J, TIAN X C, et al. Research on zoning layout method and application of contour holes for blasting of jointed rock mass tunnel [J]. Blasting, 2024, 41(4): 107–115,121. DOI: 10.3963/j.issn.1001-487X.2024.04.013. [3] 魏晨慧, 朱万成, 白羽, 等. 不同节理角度和地应力条件下岩石双孔爆破的数值模拟 [J]. 力学学报, 2016, 48(4): 926–935. DOI: 10.6052/0459-1879-15-259.WEI C H, ZHU W C, BAI Y, et al. Numerical simulation on two-hole blasting of rock under different joint angles and in-situ stress conditions [J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 926–935. DOI: 10.6052/0459-1879-15-259. [4] 于建新, 孟鹏展, 张馨, 等. 不同抵抗线影响下层状岩体爆破的破岩规律 [J]. 煤炭科学技术, 2024, 52(12): 60–70. DOI: 10.12438/cst.2023-1612.YU J X, MENG P Z, ZHANG X, et al. Rock breaking regularity of layered rock mass blasting under the influence of different resistance lines [J]. Coal Science and Technology, 2024, 52(12): 60–70. DOI: 10.12438/cst.2023-1612. [5] 徐帮树, 张万志, 石伟航, 等. 节理裂隙层状岩体隧道掘进爆破参数试验研究 [J]. 中国矿业大学学报, 2019, 48(6): 1248–1255. DOI: 10.13247/j.cnki.jcumt.001080.XU B S, ZHANG W Z, SHI W H, et al. Experimental study of parameters of tunneling blasting in jointed layered rock mass [J]. Journal of China University of Mining Technology, 2019, 48(6): 1248–1255. DOI: 10.13247/j.cnki.jcumt.001080. [6] 于飞飞, 张娜, 张宪堂, 等. 水平层状岩隧道炮孔参数优化及爆破成形研究 [J]. 爆破, 2019, 36(1): 63–69. DOI: 10.3963/j.issn.1001-487X.2019.01.010.YU F F, ZHANG N, ZHANG X T, et al. Blasting parameters optimization and blasting forming of horizontal layer rock tunnel [J]. Blasting, 2019, 36(1): 63–69. DOI: 10.3963/j.issn.1001-487X.2019.01.010. [7] 郝广伟, 张万志, 李世堂, 等. 不同循环进尺下水平层状岩隧道爆破成型研究 [J]. 地下空间与工程学报, 2020, 16(S1): 316–322.HAO G W, ZHANG W Z, LI S T, et al. Research on the shaping effect of horizontal layered rock tunnel under different blasting cyclical footage [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S1): 316–322. [8] 陈雪峰, 赵孝学, 马浪, 等. 层状节理岩体隧道钻爆参数优化研究 [J]. 公路, 2018, 63(5): 323–325.CHEN X F, ZHAO X X, MA L, et al. Optimization of drilling and blasting parameters of layered jointed rock mass tunnel [J]. Highway, 2018, 63(5): 323–325. [9] 张万志, 徐帮树, 葛颜慧, 等. 隧道拱部穿越页岩爆破开挖方法及参数试验研究 [J]. 振动与冲击, 2022, 41(15): 90–98. DOI: 10.13465/j.cnki.jvs.2022.15.012.ZHANG W Z, XU B S, GE Y H, et al. Blasting excavation method and parametric tests for tunnel arch crossing shale [J]. Journal of Vibration and Shock, 2022, 41(15): 90–98. DOI: 10.13465/j.cnki.jvs.2022.15.012. [10] 邓祥辉, 陈建勋, 罗彦斌, 等. 水平层状围岩隧道爆破控制技术 [J]. 长安大学学报(自然科学版), 2017, 37(2): 73–80,88. DOI: 10.19721/j.cnki.1671-8879.2017.02.009.DENG X H, CHEN J X, LUO Y B, et al. Blasting control technology of horizontal stratified rock tunnel [J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(2): 73–80,88. DOI: 10.19721/j.cnki.1671-8879.2017.02.009. [11] SALUM A H, MURTHY V M S R. Optimising blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes [J]. Tunnelling and Underground Space Technology, 2019, 85: 307–318. DOI: 10.1016/j.tust.2018.11.029. [12] LEI M F, HE R, LIU L H, et al. Mechanical mechanism and shaping effect of tunnel blasting construction in rock with weak interlayer [J]. Sustainability, 2022, 14(20): 13278. DOI: 10.3390/su142013278. [13] LIU K Y, LIU B G. Optimization of smooth blasting parameters for mountain tunnel construction with specified control indices based on a GA and ISVR coupling algorithm [J]. Tunnelling and Underground Space Technology, 2017, 70: 363–374. DOI: 10.1016/j.tust.2017.09.007. [14] MEI J, ZHANG W Z, XU B S, et al. Optimization methods of blasting parameters of large cross-section tunnel in horizontal layered rock mass [J]. Geotechnical and Geological Engineering, 2021, 39(7): 5309–5323. DOI: 10.1007/s10706-021-01834-8. [15] DING C X, SU H, YANG H T, et al. Fracture and damage of slit charge blasting in the layered rock mass [J]. Applied Sciences, 2024, 14(13): 5840. DOI: 10.3390/app14135840. [16] 丁祥. 互层岩体隧道爆破超欠挖控制技术研究 [J]. 铁道工程学报, 2022, 39(3): 75–80. DOI: 10.3969/j.issn.1006-2106.2022.03.013.DING X. Research on the control technology of over-under-excavation of tunnel blasting in interbedded rock masses [J]. Journal of Railway Engineering Society, 2022, 39(3): 75–80. DOI: 10.3969/j.issn.1006-2106.2022.03.013. [17] 种玉配, 熊炎林, 杨小林, 等. 水平砂泥岩地层隧道爆破振动效应研究 [J]. 爆破器材, 2020, 49(1): 54–59. DOI: 10.3969/j.issn.1001-8352.2020.01.011.ZHONG Y P, XIONG Y L, YANG X L, et al. Study on blasting vibration of tunnels in horizontal sand and mudstone stratum [J]. Explosive Materials, 2020, 49(1): 54–59. DOI: 10.3969/j.issn.1001-8352.2020.01.011. [18] 宋庆刚, 李玉能, 田仁永, 等. 炮孔直径对层状板岩光面爆破效果影响的研究 [J]. 爆破, 2019, 36(3): 60–64. DOI: 10.3963/j.issn.1001-487X.2019.03.010.SONG Q G, LI Y N, TIAN R Y, et al. Study on effect of hole diameter on smooth blasting of layered slate [J]. Blasting, 2019, 36(3): 60–64. DOI: 10.3963/j.issn.1001-487X.2019.03.010. [19] 陈正林, 蒲文明, 陈钒, 等. 四面山砂泥互层隧道爆破设计参数优化 [J]. 科学技术与工程, 2018, 18(36): 146–153. DOI: 10.3969/j.issn.1671-1815.2018.36.024.CHEN Z L, PU W M, CHEN F, et al. Optimization of blasting design parameters in tunnels of sand-mud interlayer in Simianshan tunnel [J]. Science Technology and Engineering, 2018, 18(36): 146–153. DOI: 10.3969/j.issn.1671-1815.2018.36.024. [20] 陈正林, 蒲文明, 陈钒, 等. 张家岩隧道水平层状泥岩段爆破优化研究 [J]. 西安建筑科技大学学报(自然科学版), 2019, 51(6): 865–872. DOI: 10.15986/j.1006-7930.2019.06.014.CHEN Z L, PU W M, CHEN F, et al. Research on blasting optimization of horizontal layered mudstone section in Zhangjiayan Tunnel [J]. Journal of Xiʼan University of Architecture and Technology (Natural Science Edition), 2019, 51(6): 865–872. DOI: 10.15986/j.1006-7930.2019.06.014. [21] 田宝华, 张彪, 余龙文, 等. 水平缓倾岩层隧道爆破参数优化研究 [J]. 爆破, 2023, 40(3): 52–58. DOI: 10.3963/j.issn.1001-487X.2023.03.008.TIAN B H, ZHANG B, YU L W, et al. Optimization of tunnel blasting parameters in horizontal layered sand-shale stratum [J]. Blasting, 2023, 40(3): 52–58. DOI: 10.3963/j.issn.1001-487X.2023.03.008. [22] 住房和城乡建设部. 砌筑砂浆配合比设计规程: JGJ/T 98—2010 [S]. 北京: 中国建筑工业出版社, 2010. [23] 李真珍, 于建新, 杨小林, 等. 深部煤层水压爆破裂纹扩展规律 [J]. 高压物理学报, 2022, 36(3): 184–193. DOI: 10.11858/gywlxb.20210912.LI Z Z, YU J X, YANG X L, et al. Crack propagation regularity of hydraulic blasting in deep coal seam [J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 184–193. DOI: 10.11858/gywlxb.20210912. [24] 周能娟. 节理裂隙岩体隧道爆破仿真分析 [D]. 长春: 吉林大学, 2011: 19–22. -