• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

核壳式复合活性破片对间隔靶的毁伤效应

薛建锋 赵旭峰 皮爱国 许红浩 原黎明 万斯奇

薛建锋, 赵旭峰, 皮爱国, 许红浩, 原黎明, 万斯奇. 核壳式复合活性破片对间隔靶的毁伤效应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0483
引用本文: 薛建锋, 赵旭峰, 皮爱国, 许红浩, 原黎明, 万斯奇. 核壳式复合活性破片对间隔靶的毁伤效应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0483
XUE Jianfeng, ZHAO Xufeng, PI Aiguo, XU Honghao, YUAN Liming, WAN Siqi. Study on the damage effect of core-shell composite reactive fragments on spaced targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0483
Citation: XUE Jianfeng, ZHAO Xufeng, PI Aiguo, XU Honghao, YUAN Liming, WAN Siqi. Study on the damage effect of core-shell composite reactive fragments on spaced targets[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0483

核壳式复合活性破片对间隔靶的毁伤效应

doi: 10.11883/bzycj-2024-0483
详细信息
    作者简介:

    薛建锋(1987- ),男,博士,高级工程师,xuejianfeng666@163.com

    通讯作者:

    皮爱国(1977- ),男,博士,教授,aiguo_pi@bit.edu.cn

  • 中图分类号: TJ04; O385

Study on the damage effect of core-shell composite reactive fragments on spaced targets

  • 摘要: 为提升氟聚物基活性破片的毁伤效率,拓展其应用范围,研制了一种“核壳”式复合结构活性破片,该破片采用湿混法,引入碳纤维增强基体材料的强度,采用特定的烧结条件,制备了PTFE/Al/CF钨粉和PTFE/Al/CF钨球2种试样,并开展了相应的基本力学性能试验。通过2种结构破片侵彻3 mm+3 mm+2 mm+2 mm多层间隔铝靶试验,采用Python自编的源程序对试验数据进行自动处理,获得了各层靶板的穿孔面积、变形体积以及反应光强总量,对比分析了不同速度和约束条件下多层间隔靶的毁伤特征差异。研究结果表明:“核壳”式破片侵彻能力更强,低速可穿透4层靶板,但穿孔面积较小,穿孔直径约为0.95倍破片直径;均质破片穿孔面积更大,但侵彻能力较弱,穿孔直径约为1.21倍破片直径,高速条件下只能穿透3层靶板;钢壳约束显著提升了破片的穿孔和侵彻能力。破片的主要活性反应发生在与第2层靶的撞击过程中,但其释能反应对穿孔效应的促进作用有限,毁伤特征差异主要取决于破片的力学特性。
  • 图  1  活性材料试样结构示意图

    Figure  1.  Schematic diagram of the structure of the reactive material sample

    图  2  活性材料试样

    Figure  2.  Reactive material sample

    图  3  试验场地布置示意图

    Figure  3.  Schematic diagram of the test site

    图  4  靶板和活性破片实物图

    Figure  4.  Images of target plates and reactive fragments

    图  5  靶板典型照片与处理图片

    Figure  5.  Typical target photos and processed images

    图  6  完成评估程序前后的靶板

    Figure  6.  target before and after the evaluation procedure

    图  7  靶板变形示意图

    Figure  7.  Schematic diagram of target plate deformation

    图  8  典型高速摄影图像(PTFE/Al/CF/W粉,有壳体,538 m/s)

    Figure  8.  Typical high-speed photography image (PTFE/Al/CF/W power, with shell, 538 m/s)

    图  9  典型高速摄影图像(PTFE/Al/CF/W球,有壳体,565m/s)

    Figure  9.  Typical high-speed photography image(PTFE/Al/CF/W ball,with shell,565m/s)

    图  10  总穿孔面积

    Figure  10.  Total perforation area

    图  11  第1层靶板变形的试验结果和程序计算对比

    Figure  11.  Comparison between experimental results and program calculations of the first target plate deformation

    图  12  第2层靶板的毁伤形貌

    Figure  12.  Damage morphology of the second-layer target plate

    图  13  总变形体积

    Figure  13.  Total deformation volume

    图  14  前两层靶板的变形体积和穿孔面积对比

    Figure  14.  Comparison between the deformed volume and perforation area of the first two layers of target plates

    图  15  总反应光强

    Figure  15.  Total reactive light intensity

    表  1  活性材料试样的基体材料质量配比

    Table  1.   Formulation of the matrix material for the reactive material test sample

    w(PTFE)/% w(Al)/% w(CF)/% 理论最大密度/(g·cm−3)
    72.0 26.0 2 2.270
    下载: 导出CSV

    表  2  试样2的质量配比

    Table  2.   Formulation of sample 2

    配方w(PTFE)/%w(Al)/%w(CF)/%w(W)/%
    试样30.110.9257
    下载: 导出CSV

    表  3  2种材料的动态力学性能参数

    Table  3.   Dynamic mechanical properties of two materials

    试样 气室气压/
    MPa
    应变率/
    s−1
    屈服强度/
    MPa
    弹性模量/
    MPa
    抗压强度/
    MPa
    PTFE/Al/CF 0.04 682 18.7 849 25.0
    0.10 2304 29.1 963 44.8
    0.15 3007 37.5 1202 52.1
    0.20 5448 48.8 1260 55.8
    PTFE/Al/CF/W 0.05 970 31.9 1611 37.2
    0.10 2378 38.9 2288 53.2
    0.15 3217 45.1 2791 56.5
    0.20 5386 52.6 2810 63.5
    下载: 导出CSV

    表  4  侵彻毁伤试验设计

    Table  4.   Design of penetration and damage tests

    破片类型 有无约束 试验编号 质量/g 破片直径/mm 破片长度/mm 气室压力/MPa 速度/(m·s−1
    PTFE/Al/CF/钨粉 1-1 3.60 10.02 10.04 3.0 549
    1-2 3.61 10.02 10.03 5.5 606
    1-3 3.55 10.02 10.02 8.0 759
    1-4 5.24 11.10 10.03 3.0 538
    1-5 5.22 11.10 10.03 5.5 673
    1-6 5.18 11.10 10.01 8.0 725
    PTFE/Al/CF/钨球 2-1 3.59 10.02 10.04 3.0 533
    2-2 3.61 10.04 10.02 5.5 673
    2-3 3.56 10.02 10.00 8.0 736
    2-4 5.20 11.10 10.50 3.0 565
    2-5 5.22 11.10 10.50 5.5 653
    2-6 5.21 11.10 10.50 8.0 745
    下载: 导出CSV

    表  5  各工况对应的各层靶板的穿孔面积

    Table  5.   Perforated area of each layer of the target plate for each operating condition

    试验编号速度/(m·s−1各层靶板穿孔面积/mm2总穿孔面积/mm2
    第1层靶板第2层靶板第3层靶板第4层靶板
    1-1549116.06000116.06
    1-2606116.1879.7600195.94
    1-3759132.82128.32110.860372.00
    1-4538159.99366.5700526.56
    1-5673148.66330.3822.430501.47
    1-6725170.16202.3080.460452.92
    2-153339.4222.7724.1624.85111.20
    2-2673111.2125.5524.1624.51185.43
    2-3736157.2225.0922.0822.89227.28
    2-4565138.60111.0924.0423.81297.54
    2-5653155.71176.6425.3224.04381.71
    2-6745140.45206.4620.0026.24393.15
    下载: 导出CSV

    表  6  各工况变形靶板的变形体积

    Table  6.   The deformation volume of the deformed target plate under various working conditions

    试验编号 速度/(m·s−1 各层靶板变形体积Vd/mm3 总变形体积Vt/mm3
    第1层靶板 第2层靶板 第3层靶板 第4层靶板
    1-1 549 11845 55840 67685
    1-2 606 11433 53539 27499 92471
    1-3 759 6655 29797 35855 23655 95962
    1-4 538 11387 98668 36862 146917
    1-5 673 6990 87570 74165 5000 173725
    1-6 725 7455 107958 62652 21882 199947
    2-1 533 30809 11968 11477 15603 69857
    2-2 673 51321 28440 27452 18495 125708
    2-3 736 47834 28047 14814 10555 101250
    2-4 565 36352 57151 32070 18638 144211
    2-5 653 23198 102155 34736 10826 170915
    2-6 745 35591 81511 47527 10635 175264
    下载: 导出CSV

    表  7  各工况下变形靶板前的亮度积分结果

    Table  7.   The brightness integral results before the deformation target plate under various working conditions

    试验编号 速度/(m·s−1 各层靶板前的亮度积分 总亮度积分
    第1层靶板 第2层靶板 第3层靶板 第4层靶板
    1-1 549 140.06 247.09 387.15
    1-2 606 1103.8 2322.21 856.01 4282.02
    1-3 759 948.4 1402.6 1035.3 845.7 4232
    1-4 538 468.1 861.5 862.9 2192.5
    1-5 673 1451.6 2939.2 2189.9 1149.8 7730.5
    1-6 725 1852.1 2468.1 2148.4 1538.0 8006.6
    2-1 533 18.45 71.4 31.8 7.8 129.45
    2-2 673 919.2 1244.4 784.8 367.8 3316.2
    2-3 736 841.8 1136.7 768.5 548.2 3295.2
    2-4 565 1256.5 1873.4 1419.9 956.4 5506.2
    2-5 653 1393.1 2621.7 1507.5 981.4 6503.7
    2-6 745 1571.0 2022.6 1797.6 1271.2 6662.4
    下载: 导出CSV
  • [1] 李向东, 杜忠华. 目标易损性 [M]. 北京: 北京理工大学出版社, 2013.

    LI X D, DU Z H. Target Vulnerability [M]. Beijing: Beijing Institute of Technology Press, 2013.
    [2] 叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.

    YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2012, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
    [3] WADDELL J T, BOOTES T H, BUDY G D, et al. Reactive shaped charge, reactive liner, and method for target penetration using a reactive shaped charge: US 2011/0239888 A1 [P]. 2011-10-18.
    [4] 沈波, 李延. 全含能侵彻战斗部对多层钢介质的毁伤威力表征技术 [J]. 含能材料, 2021, 29(2): 141–148. DOI: 10.11943/CJEM2020256.

    SHEN B, LI Y. Characterization technology of damage power of all-energetic penetrating warhead to multilayer steel medium [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 141–148. DOI: 10.11943/CJEM2020256.
    [5] 王靖岩, 王义智, 韩志伟. 铝-氟聚物反应性物质制备及研究进展 [J]. 含能材料, 2021, 29(1): 78–86. DOI: 10.11943/CJEM2020113.

    WANG J Y, WANG Y Z, HAN Z W. Preparation and research progress of aluminum-fluoropolymer reactive materials [J]. Chinese Journal of Energetic Materials, 2021, 29(1): 78–86. DOI: 10.11943/CJEM2020113.
    [6] 黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究 [J]. 含能材料, 2007, 15(6): 566–569. DOI: 10.3969/j.issn.1006-9941.2007.06.002.

    HUANG H J, HUANG H, YANG S Q, et al. Preliminary research on damage enhanced fragment [J]. Chinese Journal of Energetic Materials, 2007, 15(6): 566–569. DOI: 10.3969/j.issn.1006-9941.2007.06.002.
    [7] 郑雄伟, 袁宝慧, 陈进, 等. Al-PTFE 活性材料的冲击压力对冲击释能规律影响研究 [J]. 兵器材料科学与工程, 2016, 39(3): 110–113. DOI: 10.14024/j.cnki.1004-244x.20160421.002.

    ZHENG X W, YUAN B H, CHEN J, et al. Effect of shock pressure on energy releasing characteristic of Al-PTFE reactive materials [J]. Ordnance Material Science and Engineering, 2016, 39(3): 110–113. DOI: 10.14024/j.cnki.1004-244x.20160421.002.
    [8] 肖艳文, 徐峰悦, 余庆波, 等. 高密度活性破片碰撞双层靶毁伤效应 [J]. 科技导报, 2017, 35(10): 99–103. DOI: 10.3981/j.issn.1000-7857.2017.10.014.

    XIAO Y W, XU F Y, YU Q B, et al. Damage of double-spaced plates by reactive material fragment impact [J]. Science & Technology Review, 2017, 35(10): 99–103. DOI: 10.3981/j.issn.1000-7857.2017.10.014.
    [9] WANG H F, XIE J W, GE C, et al. Experimental investigation on enhanced damage to fuel tanks by reactive projectiles impact [J]. Defence Technology, 2021, 17(2): 599–608. DOI: 10.1016/j.dt.2020.03.01.
    [10] 彭军, 李彪彪, 袁宝慧, 等. 钢包覆式活性破片侵彻双层铝靶的行为特性研究 [J]. 火炸药学报, 2020, 43(1): 90–95. DOI: 10.14077/j.issn.1007-7812.201911013.

    PENG J, LI B B, YUAN B H, et al. Research on behavior of steel-coated reactive materials fragment on penetrating double-layer aluminum plates [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 90–95. DOI: 10.14077/j.issn.1007-7812.201911013.
    [11] YUAN Y, LIU Z Y, HE S, et al. Shock-induced reaction behaviors of functionally graded reactive material [J]. Defence Technology, 2021, 17(5): 1687–1698. DOI: 10.1016/j.dt.2020.09.010.
    [12] ZHANG H, WANG H F, YU Q B, et al. Perforation of double-spaced aluminum plates by reactive projectiles with different densities [J]. Materials, 2021, 14(5): 1229. DOI: 10.3390/ma14051229.
    [13] 王在成, 徐祎, 姜春兰, 等. 钨锆钛活性破片对间隔靶的毁伤效应 [J]. 兵工学报, 2023, 44(12): 3862–3871. DOI: 10.12382/bgxb.2023.0289.

    WANG Z C, XU Y, JIANG C L, et al. Damage effect of W/Zr/Ti reactive fragments on spaced targets [J]. Acta Armamentarii, 2023, 44(12): 3862–3871. DOI: 10.12382/bgxb.2023.0289.
    [14] 曹进, 陈春林, 马坤, 等. 球形含能结构材料弹体超高速撞击多层薄钢靶的毁伤特性 [J]. 含能材料, 2023, 31(8): 786–796. DOI: 10.11943/CJEM2023131.

    CAO J, CHEN C L, MA K, et al. Investigation on damage characteristics of multilayer thin steel target penetrated by hypervelocity spherical reactive materials projectile [J]. Chinese Journal of Energetic Materials, 2023, 31(8): 786–796. DOI: 10.11943/CJEM2023131.
    [15] 任鑫鑫, 李裕春, 吴家祥, 等. 碳纤维对PTFE/Al 反应材料动态力学行为和点火特性影响研究 [J]. 北京理工大学学报, 2023, 43(10): 1026–1035. DOI: 10.15918/j.tbit1001-0645.2023.047.

    REN X X, LI Y C, WU J X, et al. Effect of carbon fiber on dynamic mechanical behavior and ignition characteristics of PTFE/Al reactive materials [J]. Transactions of Beijing institute of Technology, 2023, 43(10): 1026–1035. DOI: 10.15918/j.tbit1001-0645.2023.047.
    [16] 丁亮亮. PELE 弹活性内芯配方与弹体结构设计及毁伤机理研究 [D]. 长沙: 国防科技大学, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000303.

    DING L L. Research on the reactive inner core formulation and structural design as well as damage mechanism of PELE projectile [D]. Changsha: National University of Defense Technology, 2019. DOI: 10.27052/d.cnki.gzjgu.2019.000303.
    [17] SI S P, HE C, LIU S, et al. Influence of impact velocity on impact-initiated reaction behavior of Zr-Ti-Nb alloy [J]. Materials & Design, 2022, 220: 110846. DOI: 10.1016/j.matdes.2022.110846.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  17
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-04-28
  • 网络出版日期:  2025-04-29

目录

    /

    返回文章
    返回