• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

温压炸药隧道内爆炸结构约束对冲击波及爆炸火团的影响规律

陈飞翔 张国凯 何勇 吴玉欣 刘黎旺 邓国强

陈飞翔, 张国凯, 何勇, 吴玉欣, 刘黎旺, 邓国强. 温压炸药隧道内爆炸结构约束对冲击波及爆炸火团的影响规律[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0486
引用本文: 陈飞翔, 张国凯, 何勇, 吴玉欣, 刘黎旺, 邓国强. 温压炸药隧道内爆炸结构约束对冲击波及爆炸火团的影响规律[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0486
CHEN Feixiang, ZHANG Guokai, HE Yong, WU Yuxin, LIU Liwang, DENG Guoqiang. Influence of tunnel structural confinement on shock wave and fireball generated by explosion of a thermobaric explosive in a tunnel[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0486
Citation: CHEN Feixiang, ZHANG Guokai, HE Yong, WU Yuxin, LIU Liwang, DENG Guoqiang. Influence of tunnel structural confinement on shock wave and fireball generated by explosion of a thermobaric explosive in a tunnel[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0486

温压炸药隧道内爆炸结构约束对冲击波及爆炸火团的影响规律

doi: 10.11883/bzycj-2024-0486
基金项目: 国家自然科学基金(52278504);江苏省自然科学基金((BK20220141);中央高校基本科研业务费专项资金(309231B8805)
详细信息
    作者简介:

    陈飞翔(2001- ),男,硕士研究生,fxchen@njust.edu.cn

    通讯作者:

    张国凯(1988- ),男,博士,教授,博士生导师,gkzhang@njust.edu.cn

  • 中图分类号: O382

Influence of tunnel structural confinement on shock wave and fireball generated by explosion of a thermobaric explosive in a tunnel

  • 摘要: 为研究温压炸药隧道内爆炸冲击波传播规律和火团热效应,基于OpenFOAM开展温压炸药隧道内爆炸数值模拟,与温压炸药隧道内爆炸试验数据对比验证数值模拟精度,研究沿隧道轴线距离、炸药质量对爆炸冲击波传播特性及火团热效应的影响。结果表明:相同装药质量条件下,沿隧道轴线距离大于1/3倍隧道等效圆直径时,爆炸冲击波超压峰值衰减规律和平面波形成距离不随沿隧道轴线距离变化而变化;冲击波平面波形成后,冲量随沿隧道轴线距离的增大先增大后不变。沿隧道轴线相同距离处爆炸,冲击波形成平面波距离随炸药质量的增加而增大;平面波形成后,冲击波超压峰值衰减规律不受装药质量影响,但冲击波冲量随装药质量的增加而增长。受隧道口泄能效应的影响,隧道内爆炸火团总是向近隧道口方向移动,隧道壁面约束使得火团沿隧道轴线垂直方向发展受限;火团轴线方向上出现高温尖端,隧道内轴线方向温度分布具有对称性。进一步建立爆炸火团不同温度轴线方向上传播最大距离与炸药质量的拟合公式,可预测典型温压炸药隧道内爆炸火球不同温度轴线方向上传播最大距离。
  • 图  1  隧道截面尺寸及测量仪器设备

    Figure  1.  Tunnel section dimensions and measuring equipment

    图  2  隧道内传感器布置图

    Figure  2.  Layout of sensors in the tunnel

    图  3  隧道内爆炸计算模型

    Figure  3.  Calculation model of the explosion in the tunnel

    图  4  压力计算测点布置

    Figure  4.  Measuring point layout for pressure calculation

    图  5  冲击波超压和温度时程曲线

    Figure  5.  Shock wave overpressure- and temperature-time curves

    图  6  冲击波观测范围示意图

    Figure  6.  Schematic diagram of shock wave observation range

    图  7  隧道内爆炸冲击波典型时刻的压力云图

    Figure  7.  Pressure contour plots of shock wave from an internal tunnel explosion at characteristic instants

    图  8  距隧道口不同距离处爆炸冲击波平面波形成位置

    Figure  8.  Location of planar wave formation for shock waves at various distances from the tunnel portal

    图  9  距隧道口部距离对爆炸冲击波超压峰值的影响

    Figure  9.  Effect of detonation position on the peak overpressure of a blast shock wave

    图  10  平面波形成后超压峰值随比例距离变化关系

    Figure  10.  Variation of peak overpressure with scaled distance after the formation of plane wave

    图  11  隧道轴线不同距离处平面冲击波形成前后超压曲线比较

    Figure  11.  Comparison of overpressure curves before and after planar shock wave formationat different distances along a tunnel axis

    图  12  冲击波超压-时间曲线和对应的冲量积分

    Figure  12.  Shock wave overpressure-time curve and its corresponding impulse integral

    图  13  炸药距隧道口距离对爆炸冲击波冲量传播规律的影响

    Figure  13.  Effect of the distance from the tunnel portal on the propagation laws of shock wave impulse

    图  14  距隧道口5 m处温压炸药爆炸冲击波超压峰值随传播距离的变化

    Figure  14.  Variation of peak overpressure of blast shock waves from thermobaric explosives at 5 m from the tunnel entrance with propagation distance

    图  15  超压峰值随比例距离的变化

    Figure  15.  Relationship between peak overpressure and scaled distance

    图  16  平面波形成后,超压峰值随比例距离的变化

    Figure  16.  Relationship between peak overpressure and scaled distance after plane wave formation

    图  17  炸药质量对爆炸冲击波冲量传播规律的影响

    Figure  17.  Effect of the charge mass laws of shock wave impulse

    图  18  隧道内爆炸火团典型时刻云图

    Figure  18.  Fireball evolution in a tunnel explosion at characteristic instants

    图  19  隧道内5 kg温压炸药爆炸火团温度分布

    Figure  19.  Temperature field of a fireball from a 5 kg thermobaric explosive detonation in a tunnel

    图  20  不同质量温压炸药沿隧道轴线不同距离处爆炸产生的火团在不同温度下的传播距离随时间的变化

    Figure  20.  Variation of propagation distance with time for fireballs at different temperatures resulted from thermobaric charges of various masses detonated at different distances along a tunnel axis

    表  1  Jones-Wilkins-Lee参数计算结果

    Table  1.   Jones-Wilkins-Lee parameters selection

    A/GPaB/GPaωR1R2E/GPaEAl/(kJ∙g−1)rAl/(kJ∙g−1∙s−1)
    6394.950.334.21.113.33.3e6930
    下载: 导出CSV

    表  2  冲击波最大超压峰值和冲量的数值模拟结果与试验实测结果的对比

    Table  2.   Comparison of experimental and simulated results of maximum overpressure peak and impulse of shock wave

    Ls/m Δpm I
    试验结果/kPa 计算结果/kPa 误差/% 试验结果/(kPa·ms) 计算结果/(kPa·ms) 误差/%
    4 278.8 288.2 3.4 598.7 617.0 3.1
    6 200.9 198.1 1.4 619.7 595.4 3.9
    8 141.5 137.4 2.9 698.2 712.2 2.0
    14 93.2 97.9 5.0 740.8 736.7 0.6
    16 92.9 94.8 2.0 704.8 731.9 3.8
    20 78.7 80.8 5.3 755.1 746.8 1.1
    22 73.1 79.1 8.0 702.4 755.1 7.5
    下载: 导出CSV

    表  3  火团在不同温度下的最大传播距离Lf,max

    Table  3.   Maximum propagation distances of fireballs at different temperatures

    M/kg Lf,max/m Le/m Lf,max/m
    1000 K 1500 K 1000 K 1500 K
    1 3.1 2.83 1 2.9 2.65
    2 4.6 4.0 2 2.92 2.69
    3 5.7 5.0 3 3.0 2.75
    4 6.4 5.6 4 3.05 2.80
    5 7.1 6.1 5 3.1 2.83
    下载: 导出CSV
  • [1] TÜRKER L. Thermobaric and enhanced blast explosives (TBX and EBX) [J]. Defence Technology, 2016, 12(6): 423–445. DOI: 10.1016/j.dt.2016.09.002.
    [2] SHIN J, PANG S, KIM W. Enhancing blast mitigation in tunnels with expansion chamber subjected to high explosives detonations for protecting underground facilities [J]. Tunnelling and Underground Space Technology, 2024, 147: 105720. DOI: 10.1016/j.tust.2024.105720.
    [3] CHEN F, MAO J F, ZHOU J, et al. Thermal environment inside a tunnel after thermobaric explosion [J]. Shock and Vibration, 2017, 2017: 5427485. DOI: 10.1155/2017/5427485.
    [4] 刘泉, 姚箭, 宋先钊, 等. 初始环境压力对RDX基温压炸药冲击波超压和温度的影响 [J]. 北京理工大学学报, 2024, 44(9): 913–922. DOI: 10.15918/j.tbit.1001-0645.2023.218.

    LIU Q, YAO J, SONG X Z, et al. Influence of initial ambient pressure on shockwave overpressure and temperature of RDX-based thermobaric explosive [J]. Transactions of Beijing Institute of Technology, 2024, 44(9): 913–922. DOI: 10.15918/j.tbit.1001-0645.2023.218.
    [5] 李世民, 李晓军, 郭彦朋. 温压炸药自由场爆炸空气冲击波的数值模拟研究 [J]. 爆破, 2011, 28(3): 8–12. DOI: 10.3963/j.issn.1001-487X.2011.03.003.

    LI S M, LI X J, GUO Y P. Numerical simulation study on airblast of thermobaric explosive explosion in free air [J]. Blasting, 2011, 28(3): 8–12. DOI: 10.3963/j.issn.1001-487X.2011.03.003.
    [6] 茅靳丰, 陈飞, 侯普民. 温压炸药坑道口部爆炸冲击波毁伤效应研究 [J]. 力学季刊, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.

    MAO J F, CHEN F, HOU P M. Study on shock wave damage effects of thermobaric explosive explosion in tunnel entrance [J]. Chinese Quarterly of Mechanics, 2016, 37(1): 184–193. DOI: 10.15959/j.cnki.0254-0053.2016.01.022.
    [7] TRZCIŃSKI W A, MAIZ L. Thermobaric and enhanced blast explosives: properties and testing methods [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 632–644. DOI: 10.1002/prep.201400281.
    [8] 赵新颖, 王伯良, 李席, 等. 温压炸药爆炸冲击波在爆炸堡内的传播规律 [J]. 含能材料, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.

    ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion chamber [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231–237. DOI: 10.11943/j.issn.1006-9941.2016.03.004.
    [9] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.

    GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
    [10] 纪玉国, 张国凯, 李干, 等. 坑道内爆炸条件下温压炸药的爆炸特性及其影响因素 [J]. 爆炸与冲击, 2024, 44(3): 032301. DOI: 10.11883/bzycj-2023-0011.

    JI Y G, ZHANG G K, LI G, et al. Explosion characteristics of thermobaric explosive (TBX) detonated inside a tunnel and the related influential factors [J]. Explosion and Shock Waves, 2024, 44(3): 032301. DOI: 10.11883/bzycj-2023-0011.
    [11] GOGULYA M F, BRAZHNIKOV M A. Pressure and temperature of the detonation products of explosive materials containing aluminum of various dispersities [J]. Russian Journal of Physical Chemistry B, 2010, 4(5): 773–787. DOI: 10.1134/S19907.93110050131.
    [12] MAIZ L, TRZCIŃSKI W A, PASZULA J. Optical spectroscopy to study confined and semi-closed explosions of homogeneous and composite charges [J]. Optics and Lasers in Engineering, 2017, 88: 111–119. DOI: 10.1016/j.optlaseng.2016.08.006.
    [13] 闫潇敏, 苏健军, 李芝绒, 等. 坑道内温压炸药的爆炸热效应研究 [J]. 火工品, 2015(1): 22–25. DOI: 10.3969/j.issn.1003-1480.2015.01.006.

    YAN X M, SU J J, LI Z R, et al. Experimental study on explosive thermal effect of thermal-baric explosives in tunnel [J]. Initiators and Pyrotechnics, 2015(1): 22–25. DOI: 10.3969/j.issn.1003-1480.2015.01.006.
    [14] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: University of California Radiation Laboratory at Lawrence, 1968. DOI: 10.2172/4783904.
    [15] 曹同堂, 周霖, 张向荣, 等. DNAN基熔铸炸药JWL状态方程参数的预估方法 [J]. 北京理工大学学报, 2017, 37(2): 141–145. DOI: 10.15918/j.tbit1001-0645.2017.02.006.

    CAO T T, ZHOU L, ZHANG X R, et al. A method to predict JWL equation of state parameters for DNAN based melt-cast explosives [J]. Transactions of Beijing Institute of Technology, 2017, 37(2): 141–145. DOI: 10.15918/j.tbit1001-0645.2017.02.006.
    [16] 陈朗, 冯长根, 赵玉华, 等. 含铝炸药爆轰数值模拟研究 [J]. 北京理工大学学报, 2001, 21(4): 415–419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.

    CHEN L, FENG C G, ZHAO Y H, et al. Numerical simulations of the detonation of aluminized explosives [J]. Transactions of Beijing Institute of Technology, 2001, 21(4): 415–419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.
    [17] 薛再清, 徐更光, 王廷增, 等. 用修正的KHT状态方程预报炸药爆轰性能 [J]. 北京理工大学学报, 1998, 18(3): 269–273.

    XUE Z Q, XU G G, WANG T Z, et al. Using revised KHT equation of state to predict explosives’ detonation property [J]. Journal of Beijing Institute of Technology, 1998, 18(3): 269–273.
    [18] 项大林, 荣吉利, 李健, 等. 基于KHT程序的RDX基含铝炸药JWL状态方程参数预测研究 [J]. 北京理工大学学报, 2013, 33(3): 239–243. DOI: 10.3969/j.issn.1001-0645.2013.03.005.

    XIANG D L, RONG J L, LI J, et al. JWL equation of state parameters prediction of RDX-based aluminized explosive based on KHT code [J]. Transactions of Beijing Institute of Technology, 2013, 33(3): 239–243. DOI: 10.3969/j.issn.1001-0645.2013.03.005.
    [19] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.

    ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
    [20] BIDABADI M, POORFAR A K, WANG S B, et al. A comparative study of different burning time models for the combustion of aluminum dust particles [J]. Applied Thermal Engineering, 2016, 105: 474–482. DOI: 10.1016/j.applthermaleng.2016.03.022.
    [21] 张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.

    ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
    [22] 胡涛, 蒋海燕, 吴国东, 等. 坑道内爆炸平面波形成位置的数值分析 [J]. 火炸药学报, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.

    HU T, JIANG H Y, WU G D, et al. Numerical analysis of the formation position of the explosion plane wave in the tunnel [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.
    [23] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40. DOI: 10.11883/1001-1455(2003)01-0037-4.

    YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40. DOI: 10.11883/1001-1455(2003)01-0037-4.
    [24] 奥尔连科 Л П. 爆炸物理学 [M]. 3版. 孙承纬, 译. 北京: 科学出版社, 2011.

    ОРЛЕНКО Л П. Explosion physics [M]. 3rd ed. SUN C W, trans. Beijing: Science Press, 2011.
    [25] KANG L M, LIU J P, YAO Y D, et al. Enhancing risk/safety management of HAN-based liquid propellant as a green space propulsion fuel: A study of its hazardous characteristics [J]. Process Safety and Environmental Protection, 2023, 177: 921–931. DOI: 10.1016/j.psep.2023.07.054.
    [26] LIU W J, BAI C H, LIU Q M, et al. Effect of metal dust fuel at a low concentration on explosive/air explosion characteristics [J]. Combustion and Flame, 2020, 221: 41–49. DOI: 10.1016/j.combustflame.2020.07.025.
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  29
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2025-03-05
  • 网络出版日期:  2025-03-05

目录

    /

    返回文章
    返回