• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸应力波在梯度介质中的可视化传播

张渊通 杨仁树 陈程 许鹏 于冰冰 王波 周冰

张渊通, 杨仁树, 陈程, 许鹏, 于冰冰, 王波, 周冰. 爆炸应力波在梯度介质中的可视化传播[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0497
引用本文: 张渊通, 杨仁树, 陈程, 许鹏, 于冰冰, 王波, 周冰. 爆炸应力波在梯度介质中的可视化传播[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0497
ZHANG Yuantong, YANG Renshu, CHEN Cheng, XU Peng, YU Bingbing, WANG Bo, ZHOU Bing. Study on visual propagation of explosion stress waves in gradient media[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0497
Citation: ZHANG Yuantong, YANG Renshu, CHEN Cheng, XU Peng, YU Bingbing, WANG Bo, ZHOU Bing. Study on visual propagation of explosion stress waves in gradient media[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0497

爆炸应力波在梯度介质中的可视化传播

doi: 10.11883/bzycj-2024-0497
基金项目: 国家自然科学基金(51934001,52227805)
详细信息
    作者简介:

    张渊通(1993- ),男,博士,讲师,zhangyt@ustb.edu.cn

    通讯作者:

    杨仁树(1963- ),男,博士,教授,yrs@cumtb.edu.cn

  • 中图分类号: O383; TD235

Study on visual propagation of explosion stress waves in gradient media

  • 摘要: 层状复合岩体广泛存在于矿山开采、隧道开挖以及边坡治理能工程领域,其内部强度往往呈梯度变化。通过环氧树脂材料模拟层状复合岩体,利用动态光弹性-数字图像相关综合实验系统对爆炸应力波在梯度介质中的传播过程进行可视化和精细化分析,研究爆炸应力波在正向梯度和反向梯度2种情况下的衰减规律和能流密度演化规律,通过对比动态光弹条纹直观分析在不同传播路径下的透反射特征,通过数字图像相关法定量分析爆炸应力波衰减速度的差异。结果表明:爆炸应力波在正向传播路径中条纹级数没有明显变化,在节理面处有明显的反射,在反向传播路径中条纹级数呈衰减的规律,在节理面处动光弹条纹具有很好的连续性,爆炸应力波在反向梯度介质中具有更好的穿透性。梯度介质中节理和材料的改变使水平应力衰减的速度发生改变,在正向梯度介质中水平应力的衰减速度更快。通过引入坡印廷矢量对其能流密度进行比较,发现在相同测点处正向梯度材料中能流密度额衰减速度更快,爆炸应力波在正向梯度材料中的传播过程属于“吸能”过程。
  • 图  1  爆炸动光弹-数字图像相关综合实验系统

    Figure  1.  Dynamic photoelastic-Digital image correlation experiment system

    图  2  实验试件的制作过程

    Figure  2.  Production process of experimental specimen

    图  3  正向梯度和反向梯度试件的示意图

    Figure  3.  Schematic diagram of positive gradient and reverse gradient samples

    图  4  正向梯度材料的等差条纹和Mises云图

    Figure  4.  The equal difference fringe and Mises cloud of the positive gradient material

    图  5  正向梯度材料的水平应力时程曲线

    Figure  5.  Horizontal stress time history curve of positive gradient material

    图  6  正向梯度材料中条纹级数分布

    Figure  6.  Fringe series distribution in positive gradient materials

    图  7  反向梯度材料的等差条纹和Mises云图

    Figure  7.  Isochromatic fringes and Mises cloud of reverse gradient material

    图  8  反向梯度材料的水平应力时程曲线

    Figure  8.  Horizontal stress time history curve of reverse gradient material

    图  9  反向梯度材料中条纹级数分布

    Figure  9.  Fringe series distribution in reverse gradient materials

    图  10  纵波经过细棒产生的形变

    Figure  10.  The deformation of longitudinal wave produced by the thin rod

    图  11  正向梯度材料能流密度时程图

    Figure  11.  Energy flux density time history diagram of positive gradient material

    图  12  反向梯度材料能流密度时程图

    Figure  12.  Energy flux density time history diagram of reverse gradient material

    图  13  能流密度衰减速度比较

    Figure  13.  Comparison of energy flux density attenuation

    表  1  环氧树脂材料的基本力学参数

    Table  1.   Basic mechanical parameters of epoxy resin materials

    试件增塑剂含量/%弹性模量/MPa纵波波速/(m·s−1)横波波速/(m·s−1)密度(kg·m−3泊松比
    E1043122482150212500.365
    E2538842264138911670.353
    E31034622131133211320.333
    E41527731998125910560.322
    下载: 导出CSV

    表  2  能流密度衰减比例

    Table  2.   The proportion of energy flow density attenuation

    测点能流密度/(J·m−3)
    正向梯度材料反向梯度材料
    完整梯度比例完整梯度比例
    1/1’1036397971.057773647063841.013471
    2/2’691658621.179802563448761.155455
    3/3’502135631.409206458939841.151857
    4/4’376018382.045702354324451.44908
    下载: 导出CSV
  • [1] 刘志强, 宋朝阳, 程守业, 等. 煤矿矿井建设技术与装备70余年创新发展及推广实践 [J]. 煤炭科学技术, 2024, 52(1): 65–83. DOI: 10.12438/cst.2024-0122.

    LIU Z Q, SONG Z Y, CHENG S Y, et al. Seventy years innovation development and popularization practice of coal mine construction technology and equipment in China [J]. Coal Science and Technology, 2024, 52(1): 65–83. DOI: 10.12438/cst.2024-0122.
    [2] 杨仁树, 李成孝, 陈骏, 等. 我国煤矿岩巷爆破掘进发展历程与新技术研究进展 [J]. 煤炭科学技术, 2023, 51(1): 224–241. DOI: 10.13199/j.cnki.cst.2022-1804.

    YANG R S, LI C X, CHEN J, et al. Development history and new technology research progress of rock roadway blasting excavation in coal mines in China [J]. Coal Science and Technology, 2023, 51(1): 224–241. DOI: 10.13199/j.cnki.cst.2022-1804.
    [3] 刘峰, 曹文君, 张建明. 持续创新70年硕果丰盈——煤炭工业70年科技创新综述 [J]. 中国煤炭, 2019, 45(9): 5–12. DOI: 10.19880/j.cnki.ccm.2019.09.001.

    LIU F, CAO W J, ZHANG J M. Continuous innovation and remarkable achievements in past 70 years —Research summary on scientific and technological innovation of coal industry in last 70 years [J]. China Coal, 2019, 45(9): 5–12. DOI: 10.19880/j.cnki.ccm.2019.09.001.
    [4] 陈绍杰, 冯帆, 李夕兵, 等. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题 [J]. 中国矿业大学学报, 2023, 52(5): 868–888. DOI: 10.13247/j.cnki.jcumt.20230061.

    CHEN S J, FENG F, LI X B, et al. Research progress and key issues of laboratory test and numerical simulation for slabbing failure in hard rock under complex mining conditions [J]. Journal of China University of Mining & Technology, 2023, 52(5): 868–888. DOI: 10.13247/j.cnki.jcumt.20230061.
    [5] 邓华锋, 李涛, 李建林, 等. 层状岩体各向异性声学和力学参数计算方法研究 [J]. 岩石力学与工程学报, 2020, 39(S1): 2725–2732. DOI: 10.13722/j.cnki.jrme.2019.1174.

    DENG H F, LI T, LI J L, et al. Study on calculation method of anisotropic acoustic and mechanical parameters of layered rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2725–2732. DOI: 10.13722/j.cnki.jrme.2019.1174.
    [6] 刘泽功, 乔国栋, 刘健, 等. 我国煤层爆破增透技术研究进展及展望 [J]. 煤炭学报, 2025, 50(5): 2453–2476. DOI: 10.13225/j.cnki.jccs.2024.0811.

    LIU Z G, QIAO G D, LIU J, et al. Research progress and prospect of coal seam blasting antireflection technology in China [J]. Journal of China Coal Society, 2025, 50(5): 2453–2476. DOI: 10.13225/j.cnki.jccs.2024.0811.
    [7] 刘勇, 张汶定, 陈长江, 等. 松软煤层无水化增透理论及技术发展趋势 [J]. 煤炭学报, 2025, 50(4): 2123–2146. DOI: 10.13225/j.cnki.jccs.2024.0480.

    LIU Y, ZHANG W D, CHEN C J, et al. Prospects for the development of the theory and technology of non-hydration penetration enhancement in soft coal seams [J]. Journal of China Coal Society, 2025, 50(4): 2123–2146. DOI: 10.13225/j.cnki.jccs.2024.0480.
    [8] 肖同强, 任勇辉, 神文龙, 等. 深部高瓦斯强动压巷道切顶卸压机制及技术研究 [J]. 采矿与岩层控制工程学报, 2024, 6(6): 063024. DOI: 10.13532/j.jmsce.cn10-1638/td.2024-1155.

    XIAO T Q, REN Y H, SHEN W L, et al. Study on mechanism and technology of roof cutting and pressure relief in deep roadway with strong dynamic pressure and high gas [J]. Journal of Mining And Strata Control Engineering, 2024, 6(6): 063024. DOI: 10.13532/j.jmsce.cn10-1638/td.2024-1155.
    [9] 胡超文, 王俊虎, 何满潮, 等. 中厚煤层切顶卸压无煤柱自成巷技术关键参数研究 [J]. 煤炭科学技术, 2022, 50(4): 117–123. DOI: 10.13199/j.cnki.cst.2019-0810.

    HU C W, WANG J H, HE M C, et al. Study on key parameters of self-formed roadway without coal pillar by roof cutting and pressure relief in medium and thick coal seam [J]. Coal Science and Technology, 2022, 50(4): 117–123. DOI: 10.13199/j.cnki.cst.2019-0810.
    [10] 刘朕, 杨仁树, 左进京, 等. 新型双聚能药包裂纹扩展规律及周边控制爆破试验研究 [J]. 中国矿业大学学报, 2024, 53(6): 1171–1184,1197. DOI: 10.13247/j.cnki.jcumt.20240132.

    LIU Z, YANG R Z, ZUO J J, et al. Experimental study on the crack propagation rule of a new type of dual-charge and its surrounding controlled blasting [J]. Journal of China University of Mining & Technology, 2024, 53(6): 1171–1184,1197. DOI: 10.13247/j.cnki.jcumt.20240132.
    [11] 宗琦, 王富强, 汪海波, 等. 对称多向聚能装药爆破破岩效果数值模拟研究 [J]. 安徽理工大学学报(自然科学版), 2023, 43(3): 67–72.

    ZONG Q, WANG F Q, WANG H B, et al. Numerical simulation study on the rock breaking effect of symmetrical multi-directional energy-gathering charge blasting [J]. Journal of Anhui University of Science and Technology (Natural Science), 2023, 43(3): 67–72.
    [12] 杨仁树, 李炜煜, 方士正, 等. 层状复合岩体冲击动力学特性试验研究 [J]. 岩石力学与工程学报, 2019, 38(9): 1747–1757. DOI: 10.13722/j.cnki.jrme.2019.0021.

    YANG R S, LI W Y, FANG S Z, et al. Experimental study on impact dynamic characteristics of layered composite rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1747–1757. DOI: 10.13722/j.cnki.jrme.2019.0021.
    [13] 周喻, 邹世卓, 高永涛, 等. 动载下层状岩体力学特性试验与数值模拟 [J]. 哈尔滨工业大学学报, 2023, 55(6): 93–109. DOI: 10.11918/202207020.

    ZHOU Y, ZOU S Z, GAO Y T, et al. Test and numerical simulation for mechanical properties of laminated rock mass under dynamic loading [J]. Journal of Harbin Institute of Technology, 2023, 55(6): 93–109. DOI: 10.11918/202207020.
    [14] 邱贤德, 余永强, 杨小林, 等. 层状复合岩体路堑开挖中预裂爆破技术实验 [J]. 重庆大学学报, 2003, 26(7): 108–112. DOI: 10.3969/j.issn.1000-582X.2003.07.028.

    QIU X D, YU Y Q, YANG X L, et al. Experiment research of pre-splitting in bedded composite cutting blasting digging [J]. Journal of Chongqing University, 2003, 26(7): 108–112. DOI: 10.3969/j.issn.1000-582X.2003.07.028.
    [15] DING X H, YANG Y Q, ZHOU W, et al. The law of blast stress wave propagation and fracture development in soft and hard composite rock [J]. Scientific Reports, 2022, 12(1): 17120. DOI: 10.1038/s41598-022-22109-z.
    [16] ZHU J, WEI H X, YANG X L, et al. Prediction of blasting vibration velocity of layered rock mass under multihole cut blasting [J]. Shock and Vibration, 2021, 2021: 5511190. DOI: 10.1155/2021/5511190.
    [17] 于建新, 孟鹏展, 张馨, 等. 不同抵抗线影响下层状岩体爆破的破岩规律 [J]. 煤炭科学技术, 2024, 52(12): 60–70. DOI: 10.12438/cst.2023-1612.

    YU J X, MENG P Z, ZHANG X, et al. Rock breaking regularity of layered rock mass blasting under the influence of different resistance lines [J]. Coal Science and Technology, 2024, 52(12): 60–70. DOI: 10.12438/cst.2023-1612.
    [18] 杜鑫, 甯尤军, 杨军. 地下层状岩体爆破的DDA方法模拟研究 [J]. 地下空间与工程学报, 2023, 19(3): 955–961.

    DU X, NING Y J, YANG J. Simulation of underground layered rock blasting by the DDA method [J]. Chinese Journal of Underground Space and Engineering, 2023, 19(3): 955–961.
    [19] 王海军, 乐成军, 汤雷, 等. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究 [J]. 岩土力学, 2021, 42(10): 2773–2784. DOI: 10.16285/j.rsm.2019.1066.

    WANG H J, LE C J, TANG L, et al. Three-point bending fracture characteristics of brittle solid with horizontal internal cracks based on 3D-ILC [J]. Rock and Soil Mechanics, 2021, 42(10): 2773–2784. DOI: 10.16285/j.rsm.2019.1066.
    [20] 王海军, 顾浩, 任然, 等. 基于3D-ILC脆性材料双共面与障碍内裂纹扩展特性 [J]. 煤炭学报, 2021, 46(S1): 263–273. DOI: 10.13225/j.cnki.jccs.2019.1570.

    WANG H J, GU H, REN R, et al. Fracture of impedimental crack and double coplanar cracks in brittle solid based on3D-ILC [J]. Journal of China Coal Society, 2021, 46(S1): 263–273. DOI: 10.13225/j.cnki.jccs.2019.1570.
    [21] DING C X, YANG R S, YANG L Y. Experimental results of blast-induced cracking fractal characteristics and propagation behavior in deep rock mass [J]. International Journal of Rock Mechanics and Mining Science, 2021, 142: 104772. DOI: 10.1016/j.ijrmms.2021.104772.
    [22] 胡南燕, 黄建彬, 罗斌玉, 等. 环氧树脂基脆性透明岩石相似材料配比试验研究 [J]. 岩土力学, 2023, 44(12): 3471–3480. DOI: 10.16285/j.rsm.2022.1930.

    HU N Y, HUANG J B, LUO B Y, et al. Experimental study on proportioning of epoxy resin-based transparent brittle rock-like materials [J]. Rock and Soil Mechanics, 2023, 44(12): 3471–3480. DOI: 10.16285/j.rsm.2022.1930.
    [23] JU Y, WANG L, XIE H P, et al. Visualization and transparentization of the structure and stress field of aggregated geomaterials through 3D printing and photoelastic techniques [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1383–1407. DOI: 10.1007/s00603-017-1171-9.
    [24] MAO L T, LEI Y, DING L L, et al. Evaluation of 3D deformation field in siltstone with a pre-existing 3D surface flaw under uniaxial compression using X-ray computed tomography and digital volumetric speckle photography [J]. Measurement, 2022, 189: 110484. DOI: 10.1016/j.measurement.2021.110484.
    [25] 许鹏, 杨仁树, 陈程, 等. 岩石爆破基础理论研究进展与展望Ⅲ——波纹关系 [J]. 工程科学学报, 2025, 47(1): 1–12. DOI: 10.13374/j.issn2095-9389.2024.07.30.003.

    XU P, YANG R S, CHEN C, et al. Advancements and future prospects in the fundamental theories of rock blasting researchⅢ—Interaction mechanism between blast waves and cracks [J]. Chinese Journal of Engineering, 2025, 47(1): 1–12. DOI: 10.13374/j.issn2095-9389.2024.07.30.003.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  28
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-22
  • 修回日期:  2025-08-08
  • 网络出版日期:  2025-08-18

目录

    /

    返回文章
    返回