• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

不同应变率下皮质骨压缩力学实验与本构模型

徐诚意 刘坤 康宝 宋杰 李忠新 吴志林

徐诚意, 刘坤, 康宝, 宋杰, 李忠新, 吴志林. 不同应变率下皮质骨压缩力学实验与本构模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0513
引用本文: 徐诚意, 刘坤, 康宝, 宋杰, 李忠新, 吴志林. 不同应变率下皮质骨压缩力学实验与本构模型[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0513
XU Chengyi, LIU Kun, KANG Bao, SONG Jie, LI Zhongxin, WU Zhilin. Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0513
Citation: XU Chengyi, LIU Kun, KANG Bao, SONG Jie, LI Zhongxin, WU Zhilin. Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0513

不同应变率下皮质骨压缩力学实验与本构模型

doi: 10.11883/bzycj-2024-0513
基金项目: 国家自然科学基金(12172180, 11602025)
详细信息
    作者简介:

    徐诚意(1999- ),男,硕士研究生,xuchengyi@njust.edu.cn

    通讯作者:

    刘 坤(1986- ),男,博士,副教授,硕士生导师,liukun@njust.edu.cn

  • 中图分类号: O347.3

Study on compressive mechanical tests and constitutive models of cortical bone under different strain rates

  • 摘要: 皮质骨作为人体骨骼系统的重要组成部分,能有效分散与吸收外部冲击力,保护内部骨髓腔、周围软组织和器官不受损伤。为研究冲击载荷作用下皮质骨的力学响应,借助万能材料试验机、分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)装置对猪皮质骨开展了不同应变率下的准静态与动态压缩实验。采用超景深三维显微系统和数字图像相关(digital image correlation,DIC)技术观察了皮质骨的压缩形变特征,利用含损伤的黏弹性本构模型对实验数据进行了拟合,确定了模型中的本构参数。结果表明,皮质骨在压缩过程中表现为骨质裂纹的产生与扩展,其力学性能具有明显的应变率相关性,弹性模量、屈服应力和压缩强度随应变率的增加而显著提高。准静态加载时,应力-应变曲线包括弹性变形和塑性变形阶段;高应变率加载时,应力-应变曲线在应变小于0.2%时为弹性,随着压缩量的增加呈现高度的非线性,无显著塑性变形,表现出一定的黏弹性特征。通过实验曲线与本构模型理论曲线的对比,理论值与实验值的误差较小,本构模型能准确描述皮质骨在不同应变率下的压缩力学行为,研究成果为人体冲击伤的救治与防护设计提供理论参考。
  • 图  1  取样位置

    Figure  1.  Sampling position

    图  2  试件制作过程

    Figure  2.  Specimen preparation process

    图  3  准静态实验原理

    Figure  3.  Principles of quasi-static testing

    图  4  万能材料试验机

    Figure  4.  Universal testing machine

    图  5  超景深光学显微镜系统

    Figure  5.  Super depth of field optical microscope system

    图  6  SHPB实验原理示意图

    Figure  6.  Schematic diagram of Split Hopkinson Pressure Bar experimental setup

    图  7  SHPB实验装置

    Figure  7.  Split Hopkinson Pressure Bar apparatus

    图  8  三维全场分析系统测试现场

    Figure  8.  Testing site for 3D full-field analysis system

    图  9  试件表面的散斑

    Figure  9.  Speckle pattern on the surface of the specimen

    图  10  皮质骨的准静态压缩过程

    Figure  10.  Quasi-static compression process of cortical bone

    图  11  准静态压缩时应力-应变曲线

    Figure  11.  Stress-strain curve during quasi-static compression

    图  12  准静态压缩时试件破坏形式

    Figure  12.  Specimen failure modes under quasi-static compression

    图  13  破坏面的表面结构

    Figure  13.  Surface structure of the fracture plane

    图  14  应变率为1 800 s−1时整形后的入射、反射和透射波形

    Figure  14.  Incident, reflected, and transmitted waveforms after shaping at a strain rate of 1 800 s−1

    图  15  应变率为1 800 s−1时的应力平衡图

    Figure  15.  Stress equilibrium diagram at a strain rate of 1 800 s−1

    图  16  动态压缩应力-应变曲线

    Figure  16.  Dynamic compression stress-strain curve

    图  17  应变率为900 s−1时皮质骨的变形过程

    Figure  17.  Deformation process at a strain rate of 900 s−1

    图  18  应变率为1 800 s−1时皮质骨的变形过程

    Figure  18.  Deformation process of at a strain rate of 1 800 s−1

    图  19  应变率为900 s−1时的帧数分布

    Figure  19.  Frame distribution at strain rate 900 s−1

    图  20  应变率为1 800 s−1时的帧数分布

    Figure  20.  Frame distribution at strain rate 1 800 s−1

    图  21  Cloete黏弹性本构模型[17]

    Figure  21.  Cloete’s viscoelastic constitutive model

    图  22  低应变率和高应变率时本构模型示意图

    Figure  22.  Schematic illustration of the constitutive model at low strain rates and high strain rates

    图  23  拟合曲线与实验曲线对比

    Figure  23.  Comparison of fitted curve with experimental curve

    表  1  压杆材料参数

    Table  1.   Material parameters of the pressure bar

    材料 ρ0/(kg·m−3) E0/GPa c0/(m·s−1) I0/(kg·m−2·s−1)
    LC4硬铝合金 2.7×103 70 5.05×103 1.36×107
    下载: 导出CSV

    表  2  含损伤的黏弹性本构模型参数

    Table  2.   Parameters of the viscoelastic constitutive model with damage

    D0abE0/MPaηp/(MPa·s)Em/MPaθm/sEn/MPaθn/smnp
    1.21.10.72.3×1030.0012.1×1035.7×10−62.0×10414.80.991.00.99
    下载: 导出CSV

    表  3  拟合决定系数R2

    Table  3.   Coefficient of determination R2

    $ \dot \varepsilon $/s−1 R2 $ \dot \varepsilon $/s−1 R2
    0.001 0.997 450 0.990
    0.01 0.999 900 0.984
    0.1 0.982 2200 0.998
    300 0.996
    下载: 导出CSV
  • [1] COWIN S C. Bone mechanics handbook [M]. 2nd ed. Boca Raton: CRC Press, 2001: 1–4. DOI: 10.1201/b14263.
    [2] 张冠军, 邓先攀, 杨洁, 等. 皮质骨试样制备及其材料参数识别方法研究 [J]. 中国生物医学工程学报, 2017, 36(1): 75–82. DOI: 10.3969/j.issn.0258-8021.2017.01.010.

    ZHANG G J, DENG X P, YANG J, et al. A study on cortical bone specimens preparation and method to calculate the mechanical parameters [J]. Chinese Journal of Biomedical Engineering, 2017, 36(1): 75–82. DOI: 10.3969/j.issn.0258-8021.2017.01.010.
    [3] 李昕, 陈利, 张庆明, 等. 猪下肢骨骼的冲击压缩试验研究 [J]. 中国测试, 2016, 42(10): 63–67. DOI: 10.11857/j.issn.1674-5124.2016.10.012.

    LI X, CHEN L, ZHANG Q M, et al. Research on shock compression test of pig’s lower limb [J]. China Measurement & Test, 2016, 42(10): 63–67. DOI: 10.11857/j.issn.1674-5124.2016.10.012.
    [4] SANBORN B, FOSTER M. Effect of loading rate and orientation on the compressive response of human cortical bone [R]. Army Research Laboratory Technical Report, 2008. ARL-TR-6907.
    [5] KULIN R M, JIANG F C, VECCHIO K S. Loading rate effects on the R-curve behavior of cortical bone [J]. Acta Biomaterialia, 2011, 7(2): 724–732. DOI: 10.1016/j.actbio.2010.09.027.
    [6] 安兵兵, 李凯, 张东升. 皮质骨断裂力学行为的实验研究 [J]. 力学学报, 2010, 42(6): 1164–1171. DOI: 10.6052/0459-1879-2010-6-lxxb2009-604.

    AN B B, LI K, ZHANG D S. An experimental approach on fracture behavior of cortical bones [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1164–1171. DOI: 10.6052/0459-1879-2010-6-lxxb2009-604.
    [7] 曾煊. 适用于碰撞人体有限元模型的下肢皮质骨材料率变性实验研究 [D]. 重庆: 重庆理工大学, 2019: 9–53.

    ZENG X. Experiment research on strain rate dependency of material properties of lower limb cortical bone applied for human safety finite element models [D]. Chongqing: Chongqing University of Technology, 2019: 9–53.
    [8] 雷建银. 不同工况下骨盆的生物力学响应研究 [D]. 太原: 太原理工大学, 2018: 69–85.

    LEI J Y. The biomechanical response research of pelvis under different working conditions [D]. Taiyuan: Taiyuan University of Technology, 2018: 69–85.
    [9] 顾红跃. 长骨力学特性沿轴向和周向的变化研究 [D]. 长沙: 湖南大学, 2021: 33–45. DOI: 10.27135/d.cnki.ghudu.2021.003644.

    GU H Y. Study on axial and circumferential variations of mechanical properties of long bone [D]. Changsha: Hunan University, 2021: 33–45. DOI: 10.27135/d.cnki.ghudu.2021.003644.
    [10] 翟乃川. 皮质骨微观结构和骨矿物密度对其力学特性的影响研究 [D]. 长沙: 湖南大学, 2018: 19–32.

    ZHAI N C. Effect of microstructure and bone mineral density on mechanical properties of cortical bone [D]. Changsha: Hunan University, 2018: 19–32.
    [11] 蔡志华, 周培月, 汪剑辉, 等. 骨组织准静态和动态压缩试验与本构模型研究 [J]. 实验力学, 2021, 36(3): 389–396. DOI: 10.7520/1001-4888-21-033.

    CAI Z H, ZHOU P Y, WANG J H, et al. Study on quasi-static and dynamic compression tests and constitutive model of bone tissue [J]. Journal of Experimental Mechanics, 2021, 36(3): 389–396. DOI: 10.7520/1001-4888-21-033.
    [12] 张佃元, 于晨, 郝文勇, 等. 爆炸冲击载荷下猪肺部的损伤特性 [J]. 爆炸与冲击, 2024, 44(12): 121433. DOI: 10.11883/bzycj-2024-0262.

    ZHANG D Y, YU C, HAO W Y, et al. Injury properties of porcine lung under blast load [J]. Explosion and Shock Waves, 2024, 44(12): 121433. DOI: 10.11883/bzycj-2024-0262.
    [13] LIU K, WU Z L, REN H L, et al. Strain rate sensitive compressive response of gelatine: experimental and constitutive analysis [J]. Polymer Testing, 2017, 64: 254–266. DOI: 10.1016/j.polymertesting.2017.09.008.
    [14] 余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011: 39–40.

    YU T X, QIU X M. Introduction to Impact Dynamics [M]. Beijing: Tsinghua University Press, 2011: 39–40.
    [15] 李国和, 王敏杰. 淬硬45钢在高温、高应变率下的动态力学性能及本构关系 [J]. 爆炸与冲击, 2010, 30(4): 433–438. DOI: 10.11883/1001-1455(2010)04-0433-06.

    LI G H, WANG M J. Dynamic mechanical properties and constitutive relationship of hardened steel (45HRC) under high temperature and high strain rate [J]. Explosion and Shock Waves, 2010, 30(4): 433–438. DOI: 10.11883/1001-1455(2010)04-0433-06.
    [16] 王尚城, 王冬梅, 汪方, 等. 人骨拉伸和压缩力学的性能测试 [J]. 中国组织工程研究, 2013, 17(7): 1180–1184. DOI: 10.3969/.issn.2095-4344.2013.07.008.

    WANG S C, WANG D M, WANG F, et al. Tensile and compressive mechanical property of human bone tissue [J]. Chinese Journal of Tissue Engineering Research, 2013, 17(7): 1180–1184. DOI: 10.3969/.issn.2095-4344.2013.07.008.
    [17] CLOETE T J, PAUL G, ISMAIL E B. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2015): 20130210. DOI: 10.1098/rsta.2013.0210.
    [18] 王礼立, 董新龙, 孙紫建. 高应变率下计及损伤演化的材料动态本构行为 [J]. 爆炸与冲击, 2006, 26(3): 193–198. DOI: 10.11883/1001-1455(2006)03-0193-06.

    WANG L L, DONG X L, SUN Z J. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution [J]. Explosion and Shock Waves, 2006, 26(3): 193–198. DOI: 10.11883/1001-1455(2006)03-0193-06.
    [19] 孙朝翔, 鞠玉涛, 郑亚, 等. 双基推进剂的高应变率力学特性及其含损伤ZWT本构 [J]. 爆炸与冲击, 2013, 33(5): 507–512. DOI: 10.11883/1001-1455(2013)05-0507-06.

    SUN C X, JU Y T, ZHENG Y, et al. Mechanical properties of double-base propellant at high strain rates and its damage-modified ZWT constitutive model [J]. Explosion and Shock Waves, 2013, 33(5): 507–512. DOI: 10.11883/1001-1455(2013)05-0507-06.
    [20] 王礼立. 爆炸/冲击动力学学习研究中的若干疑惑 [J]. 爆炸与冲击, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.

    WANG L L. Some doubts in studying explosion/impact dynamics [J]. Explosion and Shock Waves, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  20
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 修回日期:  2025-04-15
  • 网络出版日期:  2025-04-16

目录

    /

    返回文章
    返回