• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

不同垂向速度下翼身融合民机机体的坠撞响应

白春玉 程斯午未 解江 程升杰 李思璇

白春玉, 程斯午未, 解江, 程升杰, 李思璇. 不同垂向速度下翼身融合民机机体的坠撞响应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0520
引用本文: 白春玉, 程斯午未, 解江, 程升杰, 李思璇. 不同垂向速度下翼身融合民机机体的坠撞响应[J]. 爆炸与冲击. doi: 10.11883/bzycj-2024-0520
BAI Chunyu, CHENG Siwuwei, XIE Jiang, CHENG Shengjie, LI Sixuan. Research on the crash response of blended-wing-body civil aircraft at different vertical velocity[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0520
Citation: BAI Chunyu, CHENG Siwuwei, XIE Jiang, CHENG Shengjie, LI Sixuan. Research on the crash response of blended-wing-body civil aircraft at different vertical velocity[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0520

不同垂向速度下翼身融合民机机体的坠撞响应

doi: 10.11883/bzycj-2024-0520
基金项目: 国家重点研发计划(2022YFB4301000)
详细信息
    作者简介:

    白春玉(1984- ),男,硕士,高级工程师,baichunyu2006@163.com

    通讯作者:

    解 江(1982- ),男,博士,教授,xiejiang5@126.com

  • 中图分类号: O347.3; V223

Research on the crash response of blended-wing-body civil aircraft at different vertical velocity

  • 摘要: 为了研究翼身融合(blended wing body, BWB)新构型民机的结构坠撞响应,以美国国家航空航天局提出的拉挤杆缝合一体化(pultruded rod stitched efficient unitized structure, PRSEUS)结构为基础,用临界机动载荷(2.5g过载和−1.0g过载)和客舱增压载荷(2倍客舱增压载荷)共3种典型载荷工况作为评估BWB结构强度、刚度的输入条件,建立了一款450座级的BWB民机结构模型。在垂向7.92~9.14 m/s的坠撞工况下,进行了数值模拟,重点分析了客舱空间保持情况、客舱地板的加速度响应以及主要承力结构的冲击特性。结果表明:BWB机身在不同冲击速度下客舱区域均基本保持完整,主要破坏发生在客舱地板以下区域,可生存空间得到保持;翼身融合构型民机在坠撞时产生的加速度响应分布呈现由中央过道向机体侧降低的趋势,且中央过道处的加速度峰值较高;结构吸能方面,隔框是最主要的吸能结构,其次是机身肋板,而货舱立柱未很好的压溃吸能。
  • 图  1  PRSEUS结构示意图

    Figure  1.  Schematic diagram of PRSEUS structure

    图  2  BWB民机气动外形

    Figure  2.  Aerodynamic configuration of BWB civil aircraft

    图  3  优化前模型初步求解结果

    Figure  3.  Preliminary solution results of the original model

    图  4  迭代完成后整机位移及应变云图

    Figure  4.  Displacement and strain contour plots of the complete aircraft after iteration

    图  5  优化后的部件裕度

    Figure  5.  Optimized component margins

    图  6  BWB民机的结构模型

    Figure  6.  Structure model of BWB civil aircraft

    图  7  简化后的BWB模型

    Figure  7.  Simplified BWB model

    图  8  客舱布局示意图

    Figure  8.  Schematic diagram of cabin layout

    图  9  简化后的乘员座椅模型

    Figure  9.  Simplified model of occupant seat system

    图  10  PRSEUS结构细节

    Figure  10.  Detail of PRSEUS structure

    图  11  BWB有限元模型

    Figure  11.  BWB finite element model

    图  12  垂向坠撞速度与最大起飞重量的关系

    Figure  12.  Relationship between vertical impact velocity and maximum take-off weight

    图  13  垂向冲击速度与事故占比的关系

    Figure  13.  Relationship between vertical impact velocity and the proportion of accidents

    图  14  BWB机身变形和应力分布

    Figure  14.  Deformation and stress distribution of BWB fuselage

    图  15  BWB机身截面示意图

    Figure  15.  BWB fuselage cross-section schematic diagram

    图  16  不同冲击速度下各截面压缩量

    Figure  16.  Compression of cross-sections at various impact speeds

    图  17  不同冲击速度下的BWB剖面图

    Figure  17.  Cross-sectional views of BWB after impact at different speeds

    图  18  坠撞后隔框的变形和应力分布

    Figure  18.  Deformation and stress distribution of diaphragm after impact

    图  19  加速度计布置情况

    Figure  19.  Accelerometer arrangement

    图  20  不同客舱位置的加速度峰值

    Figure  20.  Peak acceleration at different cabin locations

    图  21  不同客舱位置伤害评估

    Figure  21.  Injury assessment at different cabin locations

    图  22  主要结构的吸能占比

    Figure  22.  Proportion of energy absorption by primary components

    表  1  典型载荷工况

    Table  1.   Typical load cases

    载荷工况 机动载荷 增压载荷 安全系数
    1 2.5g 1.00p 1.5
    2 −1.0g 1.00p 1.5
    3 1.33p 1.5
    下载: 导出CSV

    表  2  优化参数

    Table  2.   Optimization parameters

    部件名称优化约束
    二维应变蒙皮拉伸应变为6×10−3,压缩应变为4×10−3
    剪切应变为5×10−3
    平板稳定性蒙皮双轴压、剪切、双轴压与剪切耦合,rRF>0.67
    一维应变长桁拉伸应变为6×10−3,压缩应变为4×10−3
    拉伸应变为6×10−3,压缩应变为4×10−3
    杆柱稳定性长桁、框局部稳定性、压损,rRF>1
    加筋壁板稳定性rRF>0.67
    下载: 导出CSV

    表  3  简化结构的质量及重心位置

    Table  3.   The mass and center of gravity position of the simplifies structure

    结构质量/t重心坐标
    x/my/mz/m
    外翼19.8832.1515083.441556±23.799500
    动力装置及垂尾12.0040.9892164.548560±7.643624
    头顶行李箱及行李12.08
    下载: 导出CSV

    表  4  复合材料的材料属性

    Table  4.   Properties of composite material

    材料弹性模量/GPa剪切模量/GPa泊松比密度/(kg·m−3)强度/MPa
    E11E22XtXcYtYcS
    AS4单向带材料14594.210.021 6002200147048.9199154
    下载: 导出CSV

    表  5  泡沫材料属性

    Table  5.   Material properties of foam

    材料 拉伸模量/
    MPa
    泊松比 密度/
    (kg·m−3)
    拉伸截止应力/
    MPa
    Rohacell泡沫 180 0.375 1100 3.7
    下载: 导出CSV

    表  6  7075铝合金材料属性

    Table  6.   Material properties of 7075 aluminum

    材料 拉伸模量/
    GPa
    泊松比 密度/
    (kg·m−3)
    失效应变 屈服应力/
    MPa
    7075铝 70.326 0.33 2820 0.15 623
    下载: 导出CSV

    表  7  有限元模型的参数

    Table  7.   Properties of finite element model

    外翼质量/t结构质量/t头顶行李架和行李质量/t发动机和垂尾质量/t总座椅和乘客质量/t节点数单元数
    19.8880.912.081238.013 579 4532 679 991
    下载: 导出CSV
  • [1] OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design [J]. Progress in Aerospace Sciences, 2016, 82: 1–23. DOI: 10.1016/j.paerosci.2015.12.002.
    [2] 夏明, 巩文秀, 郑建强, 等. 欧美翼身融合大型民机方案综述 [J]. 民用飞机设计与研究, 2021(3): 123–134. DOI: 10.19416/j.cnki.1674-9804.2021.03.021.

    XIA M, GONG W X, ZHENG J Q, et al. A review of blended-wing-body for large civil aircraft of Europe and America [J]. Civil Aircraft Design & Research, 2021(3): 123–134. DOI: 10.19416/j.cnki.1674-9804.2021.03.021.
    [3] 张永杰, 吴莹莹, 赵书旺, 等. 翼身融合布局民机非圆截面机身结构设计研究综述 [J]. 航空学报, 2019, 40(9): 623054. DOI: 10.7527/S1000-6893.2019.23054.

    ZHANG Y J, WU Y Y, ZHAO S W, et al. Review of non-circular cross-section fuselage structure design research on blended-wing-body civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623054. DOI: 10.7527/S1000-6893.2019.23054.
    [4] MUKHOPADHYAY V, SOBIESZCZANSKI-SOBIESKI J, KOSAKA I, et al. Analysis, design, and optimization of noncylindrical fuselage for blended-wing-body vehicle [J]. Journal of Aircraft, 2004, 41(4): 925–930. DOI: 10.2514/1.417.
    [5] LIEBACK R. Blended wing body design challenges [C]//Proceedings of the AIAA International Air and Space Symposium and Exposition: the Next 100 Years. Dayton: AIAA, 2003: 2659. DOI: 10.2514/6.2003-2659.
    [6] VELICKI A, JEGLEY D. PRSEUS structural concept development [C]//Proceedings of the 52nd Aerospace Sciences Meeting. National Harbor: AIAA, 2014: 0259. DOI: 10.2514/6.2014-0259.
    [7] 张永杰, 周静飘, 石磊, 等. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法 [J]. 航空学报, 2024, 45(12): 229331. DOI: 10.7527/S1000-6893.2023.29331.

    ZHANG Y J, ZHOU J P, SHI L, et al. Optimization design method of central fuselage spherical deficient surface frames in blended-wing-body civil aircraft based on PRSEUS structure [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 229331. DOI: 10.7527/S1000-6893.2023.29331.
    [8] HORNE M R, MADARAS E I. Evaluation of acoustic emission SHM of PRSEUS composite pressure cube tests: NASA/TM-2013-217993 [R]. Hampton: Langley Research Center, 2013.
    [9] 解江, 牟浩蕾, 冯振宇. 运输类飞机适坠性合格审定导论 [M]. 北京: 中国民航出版社, 2022: 11-17.
    [10] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety [J]. Progress in Aerospace Sciences, 2018, 98: 106–123. DOI: 10.1016/j.paerosci.2018.03.008.
    [11] 任毅如, 向锦武, 罗漳平, 等. 飞行器机身结构耐撞性分析与设计 [J]. 工程力学, 2013, 30(10): 296–304. DOI: 10.6052/j.issn.1000-4750.2012.07.0478.

    REN Y R, XIANG J W, LUO Z P, et al. Crashworthiness analysis and design of aircraft fuselage structure [J]. Engineering Mechanics, 2013, 30(10): 296–304. DOI: 10.6052/j.issn.1000-4750.2012.07.0478.
    [12] 郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计 [J]. 航空学报, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.

    ZHENG J Q, XIANG J W, LUO Z P, et al. Crashworthiness optimization of civil aircraft subfloor structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640–649. DOI: CNKI:11-1929/V.20111011.1411.006.
    [13] 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验 [J]. 航空学报, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.

    ZHANG X Y, HUI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234. DOI: 10.7527/S1000-6893.2022.26234.
    [14] CAPUTO F, LAMANNA G, PERFETTO D, et al. Experimental and numerical crashworthiness study of a full-scale composite fuselage section [J]. AIAA Journal, 2021, 59(2): 700–718. DOI: 10.2514/1.J059216.
    [15] 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟 [J]. 航空学报, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.

    XIE J, MOU H L FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890. DOI: 10.7527/S1000-6893.2021.25890.
    [16] 杨强, 惠旭龙, 白春玉, 等. 高锁螺栓连接件动态拉伸响应与失效机理 [J]. 爆炸与冲击, 2020, 40(10): 103102. DOI: 10.11883/bzycj-2019-0475.

    YANG Q, HUI X L, BAI C Y, et al. Dynamic tensile response and failure mechanism of hi-lock bolt joint [J]. Explosion and Shock Waves, 2020, 40(10): 103102. DOI: 10.11883/bzycj-2019-0475.
    [17] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估 [J]. 航空学报, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.

    LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130–2140. DOI: 10.7527/S1000-6893.2013.0182.
    [18] 牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析 [J]. 航空学报, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.

    MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 227512. DOI: 10.7527/S1000-6893.2022.27512.
    [19] FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane [J]. Journal of Aircraft, 1987, 24(4): 274–280. DOI: 10.2514/3.45437.
    [20] JACKSON K E, FASANELLA E L. Development of an LS-DYNA model of an ATR42-300 aircraft for crash simulation [C]//Proceedings of the ICRASH 2004-International Crashworthiness Conference. San Francisco: Langley Research Center, 2004.
    [21] JACKSON K E, PUTNAM J B. Simulation of a full-scale crash test of a Fokker F28 fellowship aircraft: NASA/TM-2020-220435 [R]. Hampton: Langley Research Center, 2020.
    [22] 刘小川, 惠旭龙, 张欣玥, 等. 典型民用飞机全机坠撞实验研究 [J]. 航空学报, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.

    LIU X C, HUI X L, ZHANG X Y, et al. Full-scale crash experimental study of typical civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529664. DOI: 10.7527/S1000-6893.2023.29664.
    [23] STURM R, HEPPERLE M. Crashworthiness and ditching behaviour of blended-wing-body (BWB) aircraft design [J]. International Journal of Crashworthiness, 2015, 20(6): 592–601. DOI: 10.1080/13588265.2015.1068997.
    [24] CUI Z, LAI G J, WANG Q F, et al. Wind tunnel investigation of different engine layouts of a blended-wing-body transport [J]. Chinese Journal of Aeronautics, 2023, 36(9): 123–132. DOI: 10.1016/j.cja.2023.04.027.
    [25] VELICKI A, YOVANOF N, BARAJA J, et al. Damage arresting composites for shaped vehicles - phase II final report: NASA/CR-2011-216880 [R]. Houston: NASA, 2011.
    [26] 中国民用航空局. CCAR-25-R4 运输类飞机适航标准 [S]. 北京: 中华人民共和国交通运输部, 2011.
    [27] 刘小川, 张欣玥, 惠旭龙, 等. 结构修理对民机机身耐撞性的影响 [J]. 航空学报, 2023, 44(10): 227517. DOI: 10.7527/S1000-6893.2022.27517.

    LIU X C, ZHANG X Y, HUI X L, et al. Influence of structural repairs on crashworthiness of civil aircraft fuselage [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 227517. DOI: 10.7527/S1000-6893.2022.27517.
    [28] Transport Aircraft Crashworthiness and Ditching Working Group. Transport aircraft crashworthiness and ditching working group report to FAA [R]. Washington: Federal Aviation Administration, 2018.
    [29] 程坤. 典型运输类飞机客舱地板下部结构坠撞特性研究 [D]. 天津: 中国民航大学, 2020: 25–46.
    [30] EIBAND A M. Human tolerance to rapidly applied accelerations: a summary of the literature: NASA-MEMO-5-19-59E [R]. Cleveland: NASA Lewis Research Center, 1959.
  • 加载中
图(22) / 表(7)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  30
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-30
  • 修回日期:  2025-06-24
  • 网络出版日期:  2025-07-01

目录

    /

    返回文章
    返回