• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

蜂窝管表层约束混凝土抗高速侵彻性能研究

李孝臣 纪玉国 李超 李杰 蒋海明 王明洋 李干

李孝臣, 纪玉国, 李超, 李杰, 蒋海明, 王明洋, 李干. 蜂窝管表层约束混凝土抗高速侵彻性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0024
引用本文: 李孝臣, 纪玉国, 李超, 李杰, 蒋海明, 王明洋, 李干. 蜂窝管表层约束混凝土抗高速侵彻性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0024
LI Xiaochen, JI Yuguo, LI Chao, LI Jie, JIANG Haiming, WANG Mingyang, LI Gan. Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0024
Citation: LI Xiaochen, JI Yuguo, LI Chao, LI Jie, JIANG Haiming, WANG Mingyang, LI Gan. Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0024

蜂窝管表层约束混凝土抗高速侵彻性能研究

doi: 10.11883/bzycj-2025-0024
基金项目: 国家自然科学基金(11972045);
详细信息
    作者简介:

    李孝臣(1997- ),男,博士生,austlxc@163.com

    通讯作者:

    李 干(1985- ),男,博士,副教授,ligan-impact@qq.com

  • 中图分类号: O347.3

Study on the high-speed penetration resistance of honeycomb tube surface constrained concrete

  • 摘要: 为研究超高速侵彻下金属蜂窝管约束混凝土结构的抗侵彻性能,利用二级轻气炮开展了1 500 m/s附近弹体侵彻试验,使用物质点法模拟侵彻过程并对靶体和弹体参数的合理性进行验证,并利用该方法研究了蜂窝管壁厚、高度、直径和材料等参数对靶体抗侵彻性能的影响规律。数值计算表明:物质点法可以准确模拟高速侵彻过程,模拟结果与实验误差小于10%;通过正交分析得到的影响侵深的因素依次为:蜂窝管特征管深、特征内径、特征壁厚、材料;影响开坑半径的因素依次为蜂窝管特征壁厚、特征管深、材料、特征内径。对于本文所采用的弹体,根据优化结果分析得到了综合因素最优的组合。
  • 图  1  试验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  试验弹体

    Figure  2.  Experimental projectile

    图  3  侵彻试验靶体

    Figure  3.  Penetration test target

    图  4  弹体撞击蜂窝靶体过程高速摄像

    Figure  4.  High speed camera during projectile impacting honeycomb target

    图  5  不同靶体上表面形态

    Figure  5.  Upper surface morphology of different targets

    图  6  回收的试验弹体形貌

    Figure  6.  Recovered test projectile morphology

    图  7  弹头特征角度示意图

    Figure  7.  Schematic diagram of warhead characteristic angle

    图  8  H20靶体剖面图

    Figure  8.  Cross section of H20 target

    图  9  计算模型图

    Figure  9.  Calculation model

    图  10  不同背景网格尺寸弹体位移-时间曲线

    Figure  10.  Displacement time curves of projectiles with different background grid sizes

    图  11  不同工况弹体位移-时间曲线

    Figure  11.  Displacement and acceleration curves of projectile penetrating plain concrete at different times

    图  12  侵彻不同靶体损伤图与试验对比

    Figure  12.  Comparison of damage patterns and experiments of penetrating different targets

    图  13  侵彻完成侧面损伤云图对比图

    Figure  13.  Comparison of side damage nephogram after penetration

    图  14  不同侵彻工况弹体速度-时间、位移-时间变化曲线

    Figure  14.  Velocity time and displacement time curves of projectile under different penetration conditions

    图  15  侵彻钢管约束混凝土开坑对比

    Figure  15.  Comparison of penetration into confined concrete filled steel tube

    图  16  优化组合与不同工况侵深结果对比

    Figure  16.  comparison of penetration results between optimized combination and different working conditions

    图  17  优化组合与不同工况开坑半径对比

    Figure  17.  Comparison between optimized combination and pit opening radius under different working conditions

    表  1  不同工况条件下开坑半径和开坑深度

    Table  1.   Pit radius and depth under different working conditions

    工况开坑半径/mm开坑深度/mm
    H095.626.8
    H2052.617.7
    H5052.316.4
    下载: 导出CSV

    表  2  试验后弹体参数、侵彻深度对比

    Table  2.   Comparison of projectile parameters and penetration depth after test

    试验工况 v/(m/s) l/mm $\dfrac{{\Delta l}}{l} \times 100{\text{%}} $ m/g $\dfrac{{\Delta m}}{m} \times 100{\text{%}} $ $ \alpha $/° $\dfrac{{\Delta \alpha }}{{{\alpha _0}}} \times 100{\text{%}} $ P/mm P1500/mm
    H0 1469.8 33.2 7.8 8.7 7.4 68.5 6.4 285 291
    H20 1533.5 31.5 12.5 8.6 8.5 64.2 12.3 294 287.6
    H50 1456.7 30.4 15.6 8.4 10.6 60.6 17.2 267 275
     注:l:弹体长度;m:弹体质量;α,弹头特征角度;α0,弹头初始特征角度;P:实际侵彻深度;P15001500 m/s速度下侵彻深度。
    下载: 导出CSV

    表  3  侵彻结束弹体损伤对比

    Table  3.   Comparison of projectile damage at the end of penetration

    工况 数值模拟 试验回收
    H0
    H20
    H50
    下载: 导出CSV

    表  4  正交模拟设计表

    Table  4.   Orthogonal simulation design

    方案 T/mm H/mm D/mm 材料
    1 1 50 30
    2 1 100 90
    3 1 150 60
    4 2.5 50 90
    5 2.5 100 60
    6 2.5 150 30
    7 4 50 60
    8 4 100 30
    9 4 150 90
    下载: 导出CSV

    表  5  不同组合侵深结果极差分析

    Table  5.   Range analysis of penetration results at different times

    模拟工况 T/mm H/mm D/mm 材料 侵深P/mm
    T1-H50-D30-G 1 50 30 268.34
    T1-H100-D90-L 1 100 90 261.17
    T1-H150-D60-W 1 150 60 259.29
    T2.5-H50-D90-W 2.5 50 90 271.20
    T2.5-H100-D60-G 2.5 100 60 260.13
    T2.5-H150-D30-L 2.5 150 30 231.33
    T4-H50-D60-L 4 50 60 268.41
    T4-H100-D30-W 4 100 30 227.01
    T4-H150-D90-G 4 150 90 255.66
    侵深极差 12.57 20.56 20.45 8.88
    下载: 导出CSV

    表  6  开坑平均半径正交分析

    Table  6.   Orthogonal analysis of average radius of excavation

    模拟工况 T/mm H/mm D/mm 材料 成坑半径R/mm
    T1-H50-D30-G 1 50 30 118.4
    T1-H100-D90-L 1 100 90 101.1
    T1-H150-D60-W 1 150 60 103.7
    T2.5-H50-D90-W 2.5 50 90 107.8
    T2.5-H100-D60-G 2.5 100 60 86.4
    T2.5-H150-D30-L 2.5 150 30 84.3
    T4-H50-D60-L 4 50 60 91.0
    T4-H100-D30-W 4 100 30 78.3
    T4-H150-D90-G 4 150 90 65.3
    成坑半径极差 29.5 21.3 2.3 6.6
    下载: 导出CSV

    表  7  综合因素正交分析

    Table  7.   Orthogonal analysis of comprehensive factors

    工况 T/mm H/mm D/mm 材料 j p r F
    T1-H50-D30-G 1 50 30 0 0.94 1.00 0.65
    T1-H100-D90-L 1 100 90 9.62e−6 0.77 0.67 0.48
    T1-H150-D60-W 1 150 60 0.20 0.73 0.72 0.55
    T2.5-H50-D90-W 2.5 50 90 0.11 1.00 0.80 0.64
    T2.5-H100-D60-G 2.5 100 60 2.18e−3 0.75 0.40 0.38
    T2.5-H150-D30-L 2.5 150 30 0.02 0.10 0.36 0.16
    T4-H50-D60-L 4 50 60 3.03 e−3 0.94 0.48 0.47
    T4-H100-D30-W 4 100 30 1.00 0.00 0.24 0.41
    T4-H150-D90-G 4 150 90 4.35e−3 0.65 0.00 0.22
    综合得分极差 0.19 0.28 0.06 0.16
    下载: 导出CSV
  • [1] 王明洋, 岳松林, 李海波, 等. 超高速弹撞击岩石的地冲击效应等效计算 [J]. 岩石力学与工程学报, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.

    WANG M Y, YUE S L, LI H B, et al. Equivalent calculation of ground impact effect of hypervelocity projectil-e on rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2655–2663. DOI: 10.13722/j.cnki.jrme.2018.0473.
    [2] 韩林海. 钢管混凝土结构[M]. 北京: 科学出版社, 2000.
    [3] 刘培生. 多孔固体结构与性能[M]. 北京: 清华大学出版社, 2003.
    [4] 石少卿, 黄翔宇, 刘颖芳, 等. 多边形钢管混凝土短构件在防护工程中的应用 [J]. 混凝土, 2005(2): 95–98. DOI: 10.3969/j.issn.1002-3550.2005.02.027.

    SHI S Q, HUANG X Y, LIU Y F, et al. Application of polygonal concrete-filled steel tube short members in p-rotective engineering [J]. Concrete, 2005(2): 95–98. DOI: 10.3969/j.issn.1002-3550.2005.02.027.
    [5] 程华, 黄宗明, 石少卿, 等. 应用仿生原理设计遮弹层及其抗侵彻数值模拟分析 [J]. 应用力学学报, 2005(4): 593–597+679. DOI: 10.3969/j.issn.1000-4939.2005.04.019.

    CHENG H, HUANG Z M, SHI S Q, et al. Numerical simulation analysis of design of bullet shield layer and its anti-penetration using biomimetic principle [J]. Chinese Journal of Applied Mechanics, 2005(4): 593–597+679. DOI: 10.3969/j.issn.1000-4939.2005.04.019.
    [6] 蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19. DOI: 10.13465/j.cnki.jvs.2018.13.003.

    MENG C M, SONG D Y, JIANG Z G, et al. Experimental study on the anti-penetration performance of polygo-nal steel tube confined concrete target [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. DOI: 10.13465/j.cnki.jvs.2018.13.003.
    [7] 宋殿义, 谭清华, 蒙朝美, 等. 格栅钢管约束混凝土靶抗多发打击性能试验研究 [J]. 防护工程, 2020, 42(3): 11–18. DOI: 10.3969/j.issn.1674-1854.2020.03.002.

    SONG D Y, TAN Q H, MENG C M, et al. Experimental study on the resistance to multiple impacts of grating steel tube confined concrete target [J]. Protective Engineering, 2020, 42(3): 11–18. DOI: 10.3969/j.issn.1674-1854.2020.03.002.
    [8] 宋殿义, 谭清华, 申志强, 等. 蜂窝钢管约束混凝土靶抗多发打击试验研究 [J]. 振动与冲击, 2021, 40(10): 133–139+158. DOI: 10.13465/j.cnki.jvs.2021.10.017.

    SONG D Y, TAN Q H, SHEN Z Q, et al. Experimental investigation on cellular steel-tube-confined concrete tar-gets under multi-hit of projectiles [J]. Journal of Vibration and Shock, 2021, 40(10): 133–139+158. DOI: 10.13465/j.cnki.jvs.2021.10.017.
    [9] 赵宏远, 武海军, 董恒, 等. 蜂窝钢管混凝土抗侵彻性能实验研究 [J]. 爆炸与冲击, 2023, 43(5): 46–56. DOI: 10.11883/bzycj-2022-0050.

    ZHAO H Y, WU H J, DONG H, et al. Experimental study on the anti-penetration performance of honeycomb st-eel tube concrete [J]. Explosion and Shock Waves, 2023, 43(5): 46–56. DOI: 10.11883/bzycj-2022-0050.
    [10] 李季, 储召军, 孙建虎, 等. 钢管钢纤维高强混凝土遮弹层抗侵彻数值模拟 [J]. 后勤工程学院学报, 2016, 32(2): 27–31. DOI: 10.3969/j.issn.1672-7843.2016.02.005.

    LI J, CHU Z J, SUN J H, et al. Numerical simulation of the anti-penetration performance of steel tube steel fib-er high-strength concrete armor layer [J]. Journal of Logistics Engineering College, 2016, 32(2): 27–31. DOI: 10.3969/j.issn.1672-7843.2016.02.005.
    [11] 李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.

    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental study on the penetration depth reduction phen-omenon of ultra-high-speed projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
    [12] NATO STANAG 4114, Measurement of projectile velocities[S]. Brussels: NATO, 1977.
    [13] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [14] 邓云飞, 崔亚男, 慕忠成, 等. 卵形头弹体对素混凝土高速侵彻的实验研究 [J]. 应用力学学报, 2019, 36(5): 1144–1151+1262. DOI: 10.11776/cjam.36.05.D050.

    DENG Y F, CUI Y N, Mu Z C, et al. Experimental study on high-speed penetration of ogive-nose projectiles into plain concrete [J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1144–1151+1262. DOI: 10.11776/cjam.36.05.D050.
    [15] Ma S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hy-pervelocity impact problems. International Journal of Impact Engineering, 2009, 36: 272–282. DOI: 10.1016/j.ijimpeng.2008.07.001.
    [16] 倪锐晨, 孙梓贤, 李家盛, 等. 结构爆炸毁伤的浸没多介质有限体积物质点法 [J]. 力学学报, 2022, 54(12): 3269–3282. DOI: 10.6052/0459-1879-22-446.

    NI R C, SUN Z X, LI J S, et al. An immersed multi-material finite volume-material point method for structural blast damage [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3269–3282. DOI: 10.6052/0459-1879-22-446.
    [17] 谢桂兰, 左立来, 宋慕清, 等. 基于物质点法弹丸侵彻靶板的仿真与结构优化 [J]. 弹道学报, 2023, 35(2): 46–52. DOI: 10.12115/j.issn.1004-499X(2023)02-006.

    XIE G L, ZUO L L, SONG M Q, et al. Simulation and structural optimization of projectile penetration of targe-t plates based on the material point method [J]. Journal of Ballistics, 2023, 35(2): 46–52. DOI: 10.12115/j.issn.1004-499X(2023)02-006.
    [18] 谢桂兰, 侯昆, 龚曙光, 等. 基于物质点法Ti/Al3Ti层状复合材料抗斜侵彻性能研究 [J]. 兵器装备工程学报, 2023, 44(4): 194–199. DOI: 10.11809/bqzbgcxb2023.04.027.

    XIE G L, HOU K, GONG S G, et al. Research on oblique penetration resistance of Ti/Al3Ti laminate composit-es based on the material point method [J]. Journal of Ordnance Equipment Engineering, 2023, 44(4): 194–199. DOI: 10.11809/bqzbgcxb2023.04.027.
    [19] ZHANG X, MA S, HUANG X, et al. Contact algorithms for the material point method in impact and penetration simulation [J]. International Journal for Numerical Methods in Engineering, 2011, 85(4): 498–517. DOI: 10.11809/bqzbgcxb2023.04.027.
    [20] 王宇新, 李晓杰, 杨国俊, 等. 304L/Q235B大面积金属板爆炸焊接物质点法模拟分析 [J]. 爆炸与冲击, 2022, 42(3): 150–159. DOI: 10.11883/bzycj-2021-0198.

    WANG Y X, LI X J, YANG G J, et al. Simulation analysis of 304L/Q235B large-area metal plate explosive we-lding substance point method [J]. Explosion and Shock Waves, 2022, 42(3): 150–159. DOI: 10.11883/bzycj-2021-0198.
    [21] HU W Q, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using theMPM [J]. Interational Journal of lmpact Engineering, 2006, 32(12): 2066–2096. DOI: 10.1016/j.ijimpeng.2005.05.004.
    [22] 张雄, 廉艳平, 杨鹏飞, 等. 冲击爆炸问题的三维物质点法数值仿真 [J]. 计算机辅助工程, 2011, 20(4): 29–37. DOI: 10.3969/j.issn.1006-0871.2011.04.007.

    ZHANG X, LIAN Y P, YANG P F, et al. 3D simulation based on material point method for impact and explosi-on problems [J]. Computer Aided Engineering, 2011, 20(4): 29–37. DOI: 10.3969/j.issn.1006-0871.2011.04.007.
    [23] 李磊, 张先锋, 吴雪, 等. 不同硬度30CrMnSiNi2A钢的动态本构与损伤参数 [J]. 高压物理学报, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.

    LI L, ZHANG X F, WU X, et al. Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with di-fferent hardness [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 239–248. DOI: 10.11858/gywlxb.2017.03.005.
    [24] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C]// JACKSON N, DICKERT S. 14th International Symposium Ballistics. USA: American Defense Preparedness Association, 1995, 591–600.
    [25] ROHR I, NAHME H, THOMA K, et al. Material characterisation and constitutive modelling of a tungsten-sintered alloy for awide range of strain rates [J]. International Journal of Impact Engineering, 2008, 35(8): 811–819. DOI: 10.1016/j.ijimpeng.2007.12.006.
    [26] 杜明燃, 陈宇航, 陆少锋, 等. 基于正交试验法的气泡帷幕削波特性研究 [J]. 高压物理学报, 2023, 37(6): 195–205. DOI: 10.11858/gywlxb.20230684.

    DU M R, CHEN Y H, LU S F, et al. Study on the wave-cutting characteristics of bubble curtain based on orth-ogonal test method [J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 195–205. DOI: 10.11858/gywlxb.20230684.
    [27] 辛春亮, 朱星宇, 薛再清, 等. 有限元分析常用材料参数手册[M]. 2版. 北京: 机械工业出版社, 2022.
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  19
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 修回日期:  2024-03-06
  • 网络出版日期:  2025-03-12

目录

    /

    返回文章
    返回