• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

金属桥箔电爆炸驱动飞片过程流场瞬态观测与数值模拟

伍俊英 郑富德 姚雨乐 李钧剑 刘瑞政 刘丹阳

伍俊英, 郑富德, 姚雨乐, 李钧剑, 刘瑞政, 刘丹阳. 金属桥箔电爆炸驱动飞片过程流场瞬态观测与数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0037
引用本文: 伍俊英, 郑富德, 姚雨乐, 李钧剑, 刘瑞政, 刘丹阳. 金属桥箔电爆炸驱动飞片过程流场瞬态观测与数值模拟[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0037
WU Junying, ZHENG Fude, YAO Yule, LI Junjian, LIU Ruizheng, LIU Danyang. Transient observation and numerical simulation study on the flow field of flyer driven by the electric explosion of metal foil[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0037
Citation: WU Junying, ZHENG Fude, YAO Yule, LI Junjian, LIU Ruizheng, LIU Danyang. Transient observation and numerical simulation study on the flow field of flyer driven by the electric explosion of metal foil[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0037

金属桥箔电爆炸驱动飞片过程流场瞬态观测与数值模拟

doi: 10.11883/bzycj-2025-0037
基金项目: 爆炸科学与安全防护全国重点实验室开放基金(KFJJ20-04M)
详细信息
    作者简介:

    伍俊英(1976- ),女,博士,副教授,wjy1312@bit.edu.cn

  • 中图分类号: O383; TJ45

Transient observation and numerical simulation study on the flow field of flyer driven by the electric explosion of metal foil

  • 摘要: 金属桥箔电爆炸驱动绝缘飞片的冲击起爆与点火技术在武器装备的起爆与点火系统中被广泛应用。为弥补现有研究对飞片运动过程中流场演化规律描述不足的缺陷,促进该技术向能量高效利用以及小型化等方面发展,搭建了双脉冲激光纹影瞬态观测实验系统,获得了不同时刻下流场的密度分布以及飞片的运动距离,同时,建立了金属桥箔电爆炸驱动飞片运动过程的二维轴对称流体动力学计算模型与计算方法,计算充分考虑了加速膛内外流场在飞片运动、冲击波压缩以及高温高压等离子体膨胀等作用下的演化规律,采用相变体积分数法描述桥箔在电能作用下由固相到等离子体相的转变,建立了等离子体状态方程以准确描述等离子体的状态,采用动网格模型描述了飞片在流场驱动下的运动。计算与实验得到的流场密度分布具有较好的贴合性,且飞片运动距离和飞片运动速度的最大误差分别为6.1%与8.1%,验证了计算模型与计算方法的准确性。研究结果表明:电容为0.33 μF、起爆电压为2800 V时,研究范围内,流场压强最大值基本维持在1×107 Pa左右;流场温度逐渐从516 ns时刻的9950 K降低到2310 ns时的3100 K;流场等离子体相分布逐渐由扁平状发展为长条状,等离子体相与飞片运动垂直方向的最大扩散距离为0.8 mm。1360 ns后,由于飞片突破冲击波波阵面,流场压强分布与温度分布的前端突起。
  • 图  1  双脉冲激光纹影瞬态观测实验系统组成示意图

    Figure  1.  Schematic diagram of the dual-pulse laser schlieren system for transient observation experiments

    图  2  桥箔电爆炸驱动飞片实验装置结构示意图

    Figure  2.  Configuration schematic for bridge-foil explosive-driven flyer experiments

    图  3  不同时刻流场的纹影照片

    Figure  3.  Schlieren photographs of the flow field at different moments

    图  4  电爆炸驱动飞片的计算模型示意图

    Figure  4.  Computational model schematic for flyer driven by electric explosion

    图  5  飞片运动的动网格模型计算过程示意图

    Figure  5.  Schematic of moving mesh model for flyer motion simulation

    图  6  CCNA复合膜桥箔电爆炸过程的电压、电流与功率随时间变化曲线

    Figure  6.  Time dependent curves of voltage, current and power during the process of electric explosion of the CCNA composite bridge foil

    图  7  数值模拟计算与实验得到的流场密度分布对比图

    Figure  7.  Comparison of density distribution between simulation and experiment

    图  8  数值模拟计算与实验得到的飞片运动距离与飞片速度随时间变化曲线对比图

    Figure  8.  Comparison of distance-time curve and velocity-time curve for the motion of flyer between simulation and experiment

    图  9  桥箔电爆炸驱动飞片过程流场压强分布

    Figure  9.  Pressure distribution of flow field of flyer driven by the electric explosion of metal foil

    图  10  桥箔电爆炸驱动飞片过程流场温度分布

    Figure  10.  Temperature distribution of flow field of flyer driven by the electric explosion of metal foil

    图  11  桥箔电爆炸驱动飞片过程流场等离子体相分布

    Figure  11.  Plasma phase distribution of flow field of flyer driven by the electric explosion of metal foil

    表  1  相关材料物性参数

    Table  1.   Physical properties of related materials

    材料 密度/kg∙m−3 热导率/W∙m−1∙K−1 热容/J∙kg−1∙K−1 汽化热/J∙kg−1 汽化温度/K 剪切模量/GPa
    铜(Cu) 8960 380.1 420 4.8×106 2836
    空气 1.225 0.0242 1006.43
    聚酰亚胺 1420 0.4 1090 1.04
    下载: 导出CSV
  • [1] LEE R S, OSHER J E, CHAU H H, et al. 1 MJ electric gun facility at LLNL: UCRL-JC-108530 [R]. Livermore: Lawrence Livermore National Laboratory, 1992.
    [2] LOGAN J D, LEE R S. EBF1: a computer simulation of the preburst behavior of electrically heated exploding foils: UCRL-52003 [R]. Livermore: Lawrence Livermore National Laboratory, 1976.
    [3] MURPHY M J, ADRIAN R J. Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations [J]. Experiments in Fluids, 2007, 43(2/3): 163–171. DOI: 10.1007/s00348-007-0254-x.
    [4] WILLEY T M, CHAMPLEY K, HODGIN R, et al. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers [J]. Journal of Applied Physics, 2016, 119(23): 235901. DOI: 10.1063/1.4953681.
    [5] WANG Y, GUO F, WANG W J, et al. Improved exploding properties of Al/Cu multilayer initiators [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(11): 1698–1704. DOI: 10.1002/prep.202000047.
    [6] HROUSIS C A, CHRISTENSEN J S. Progress in initiator modeling: LLNL-CONF-413208 [R]. Livermore: Lawrence Livermore National Laboratory, 2009.
    [7] SAXENA A K, KAUSHIK T C, GUPTA S C. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators [J]. Review of Scientific Instruments, 2010, 81(3): 033508. DOI: 10.1063/1.3327818.
    [8] 程立. 某冲击片雷管作用过程数值仿真与可靠性评估研究 [D]. 北京: 北京理工大学, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000340.

    CHENG L. Study on reliability evaluation and action process numerical simulation of slapper detonator [D]. Beijing: Beijing Institute of Technology, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000340.
    [9] 钱石川, 甘强, 任志伟, 等. 桥箔电爆炸驱动飞片的数值模拟 [J]. 北京理工大学学报, 2017, 37(S2): 125–127,136.

    QIAN S C, GAN Q, REN Z W, et al. Numerical simulation of flyer driven by electric explosion of bridge foil [J]. Transactions of Beijing Institute of Technology, 2017, 37(S2): 125–127,136.
    [10] XU C, LIU Z G. Numerical analysis on acceleration process and shock initiation of parylene C−Cu flyer in exploding foil initiator [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(5): e202100321. DOI: 10.1002/prep.202100321.
    [11] 伍俊英, 殷宇, 郑富德, 等. 金属桥箔电爆炸驱动飞片过程数值模拟研究 [J]. 北京理工大学学报, 2024, 44(4): 336–347. DOI: 10.15918/j.tbit1001-0645.2023.095.

    WU J Y, YIN Y, ZHENG F D, et al. Numerical simulation of metal bridge foil electric explosion driving flyer [J]. Transactions of Beijing Institute of Technology, 2024, 44(4): 336–347. DOI: 10.15918/j.tbit1001-0645.2023.095.
    [12] 殷宇. 金属桥箔电爆炸驱动飞片实验与数值模拟研究 [D]. 北京: 北京理工大学, 2023.
    [13] 寇永锋. 火炸药装药烤燃反应特征及热安全性研究 [D]. 北京: 北京理工大学, 2022.
    [14] 陈华. 聚酰亚胺材料的力学化学特性及其超高速碰撞效应研究 [D]. 长沙: 国防科学技术大学, 2013.

    CHEN H. Research on the mechanical and chemical properties of polyimide and its influence on hypervelocity impact phenomena [D]. Changsha: National University of Defense Technology, 2013.
    [15] 李雅瑟, 伍俊英, 汪龙, 等. 阵列桥箔电爆炸过程数值模拟 [J]. 北京理工大学学报, 2017, 37(S2): 153–157.

    LI Y S, WU J Y, WANG L, et al. Numerical simulation of array bridge foil electrical exploding [J]. Transactions of Beijing Institute of Technology, 2017, 37(S2): 153–157.
    [16] WU J Y, WANG L, LI Y S, et al. Characteristics of a plasma flow field produced by a metal array bridge foil explosion [J]. Plasma Science and Technology, 2018, 20(7): 075501. DOI: 10.1088/2058-6272/aab783.
    [17] MOŚCICKI T, HOFFMAN J, SZYMAŃSKI Z. Modelling of plasma formation during nanosecond laser ablation [J]. Archives of Mechanics, 2011, 63(2): 99–116.
    [18] JOHNSTON M D, HAHN K, OLIVER B V, et al. Volumetric plasma source development and characterization: SAND2008-6161 [R]. Albuquerque: Sandia National Laboratories, 2008. DOI: 10.2172/942062.
    [19] ZHAO J P, ZHANG Q G, YAN W Y, et al. Plasma characteristics of single aluminum wire electrically exploded in high vacuum [J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2207–2213. DOI: 10.1109/TPS.2013.2248098.
    [20] ROZMAN R, GRABEC I, GOVEKAR E. Influence of absorption mechanisms on laser-induced plasma plume [J]. Applied Surface Science, 2008, 254(11): 3295–3305. DOI: 10.1016/j.apsusc.2007.11.029.
    [21] 王飞. 激光作用下等离子体爆轰波特性及驱动飞片研究 [D]. 北京: 北京理工大学, 2013.
    [22] 伍俊英, 于红新, 汪龙, 等. 金属桥箔水中电爆炸流场数值模拟研究 [J]. 兵工学报, 2016, 37(S1): 51–56.

    WU J Y, YU H X, WANG L, et al. Numerical simulation of electric exploding of metal bridge foil in water [J]. Acta Armamentarii, 2016, 37(S1): 51–56.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  18
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-14
  • 修回日期:  2025-07-16
  • 网络出版日期:  2025-07-16

目录

    /

    返回文章
    返回