Effects of non-premixed CO2 injection pressure on the premixed explosion characteristics of hydrogen-doped natural gas
-
摘要: 煤制氢是煤炭能源低碳转型的有效方案,针对煤制氢通入天然气管网大规模输送过程中安全问题,研究非预混CO2喷射对掺氢天然气爆炸特性的影响。设计并搭建了爆炸实验平台,探究非预混CO2的喷射压力(0~1.00 MPa)和喷射时间(0~180 ms,喷射早于点火开启的时间)对爆炸火焰传播行为和压力特性的影响规律。结果表明:非预混CO2喷射显著影响甲烷/氢气/空气预混气爆炸行为。CO2喷射会引起湍流效应导致火焰褶皱和结构改变,从而使火焰传播速度和爆炸压力增大。当喷射时间固定时(如0或120 ms),增加喷射压力会引入更多的CO2,增强局部湍流和扰动,加剧火焰加速和爆炸后果。随着喷射时间增加,不同喷射压力下最大爆炸压力均呈先增后减的趋势。CO2喷射对爆炸的湍流促进作用和稀释作用相互竞争,并存在临界喷射时间。过多的CO2喷射时会增强它的稀释作用,削弱CO2喷射对爆炸的湍流扰动能力,降低爆炸强度。此外,较大的喷射压力有着更小的临界喷射时间,同时较大喷射压力下的最大爆炸压力对喷射时间的变化有着更高的敏感性。Abstract: Coal-to-hydrogen is an effective solution for the low-carbon transformation of coal energy. To address the explosion safety issues during coal-to-hydrogen transportation via the natural gas pipeline network, the effect of non-premixed CO2 injection on the explosion characteristics of hydrogen-doped natural gas was investigated. An experimental explosion platform was independently designed and constructed to actively release CO2 into the hydrogen-doped methane explosion via a high-pressure gas injection device. The CO2 injection was turned on earlier than ignition to create a non-premixed turbulent atmosphere. The volume of CO2 injection was controlled by injection pressure (0, 0.5, 0.75, and 1.00 MPa) and injection time (0, 60, 120, and 180 ms). The explosion flame propagation dynamics and pressure behavior under non-premixed CO2 injection were analyzed. Results showed that injection pressure and injection time significantly influence the premixed explosion process. The injection of non-premixed CO2 into the premixed explosion induces turbulence, causing flame wrinkling. Structural changes in wrinkled flames increase the flame surface area, leading to accelerated flame propagation and enhanced explosion intensity. For a given injected time (e.g., 0 or 120 ms), increasing the injection pressure introduces more CO2, which enhances localized turbulence and disturbance in the flame, leading to further flame acceleration and more severe explosion consequences. As the injection time increases, the maximum explosion pressure of different injection pressures increases and then decreases. CO2 injection in the explosion plays a competitive relationship between turbulence promotion and dilution effect, and there is a critical injection time. Excessive CO2 injection can enhance its dilution effect, weakening the CO2 injection on the explosion of turbulence perturbation ability, which reduces the explosion intensity. Moreover, a larger injection pressure has a smaller critical injection time. Meanwhile, the maximum explosion pressure at larger injection pressures has a higher sensitivity to changes in injection time. Injection pressure and injection time are the key parameters of CO2 injection affecting the explosion hazard of hydrogen-doped natural gas. The findings provide fundamental guidelines for the safety prevention and control strategy of hydrogen transportation in the natural gas pipeline network.
-
Key words:
- coal-to-hydrogen /
- methane/hydrogen /
- premixed explosion /
- CO2 injection /
- injection pressure
-
表 1 实验配置
Table 1. Experimental settings
Φ φH2/% 喷射位置/mm pi/MPa 平均流量/(L·s−1) 1.0 50 − 0(无喷射) − 250 0.50 1.33 0.75 2.00 1.00 3.33 -
[1] 秦勇, 易同生, 周永锋, 等. 煤炭地下气化碳减排技术研究进展与未来探索 [J]. 煤炭学报, 2024, 49(1): 495–512. DOI: 10.13225/j.cnki.jccs.YH23.1329.QIN Y, YI T S, ZHOU Y F, et al. Research progress and future study of carbon emission reduction for UCG [J]. Journal of China Coal Society, 2024, 49(1): 495–512. DOI: 10.13225/j.cnki.jccs.YH23.1329. [2] 谭厚章, 王学斌, 杨富鑫, 等. 大型燃煤发电机组低碳技术进展 [J]. 煤炭学报, 2024, 49(2): 1052–1066. DOI: 10.13225/j.cnki.jccs.ZZ24.0060.TAN H Z, WANG X B, YANG F X, et al. Progress in low carbon technologies for large-scale coal-fired power plants [J]. Journal of China Coal Society, 2024, 49(2): 1052–1066. DOI: 10.13225/j.cnki.jccs.ZZ24.0060. [3] 洪皓. 煤炭制氢经济适用性分析 [J]. 能源与节能, 2020(12): 82–85. DOI: 10.16643/j.cnki.14-1360/td.2020.12.034.HONG H. Analysis on economic applicability of hydrogen production from coal [J]. Energy and Energy Conservation, 2020(12): 82–85. DOI: 10.16643/j.cnki.14-1360/td.2020.12.034. [4] 李刚. 煤制氢技术发展与应用 [J]. 科技创新与生产力, 2024, 45(11): 54–57. DOI: 10.3969/j.issn.1674-9146.2024.11.054.LI G. Development and application of coal based hydrogen production technology [J]. Sci-tech Innovation and Productivity, 2024, 45(11): 54–57. DOI: 10.3969/j.issn.1674-9146.2024.11.054. [5] ERDENER B C, SERGI B, GUERRA O J, et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines [J]. International Journal of Hydrogen Energy, 2023, 48(14): 5595–5617. DOI: 10.1016/j.ijhydene.2022.10.254. [6] ZHANG H W, ZHAO J, LI J F, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen–natural gas pipeline transportation [J]. Natural Gas Industry B, 2023, 10(6): 570–582.10. DOI: 10.1016/j.ngib.2023.11.001. [7] ARAVINDAN M, PRAVEEN KUMAR G, ARULANANDAM M K, et al. Multi-objective optimization and analysis of chemical kinetics properties: Exploring the impact of different hydrogen blending ratios on LPG and methane-air mixtures [J]. Energy Conversion and Management: X, 2024, 22: 100532. DOI: 10.1016/j.ecmx.2024.100532. [8] LO BASSO G, PASTORE L M, SGA RAMELLA A, et al. Recent progresses in H2NG blends use downstream power-to-gas policies application: an overview over the last decade [J]. International Journal of Hydrogen Energy, 2024, 51: 424–453. DOI: 10.1016/j.ijhydene.2023.06.141. [9] 罗振敏, 南凡, 孙亚丽, 等. 掺氢比和CO2对掺氢天然气爆炸特性的影响 [J/OL]. 爆炸与冲击, 2025: 1–14. DOI: 10.11883/bzycj-2024-0282.LUO Z M, NAN F, SUN Y L, et al. Effects of hydrogen ratio and CO2 on the explosion characteristics of hydrogen-doped natural gas [J/OL]. Explosion and Shock Waves, 2025: 1–14. DOI: 10.11883/bzycj-2024-0282. [10] 梅亮, 郭进, 黄时凯, 等. 密闭容器内氢气-甲烷-空气的爆炸特性 [J]. 含能材料, 2025, 33(3): 225–235. DOI: 10.11943/CJEM2024186.MEI L, GUO J, HUANG SK, et al. Explosion Characteristics of Hydrogen-Methane-Air in a Closed Vessel [J]. Chinese Journal of Energetic Materials, 2025, 33(3): 225–235. DOI: 10.11943/CJEM2024186. [11] WANG T, LIANG H, LIN J J, et al. The explosion thermal behavior of H2/CH4/air mixtures in a closed 20 L vessel [J]. International Journal of Hydrogen Energy, 2022, 47(2): 1390–1400. DOI: 10.1016/j.ijhydene.2021.10.092. [12] MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291–11298. DOI: 10.1016/j.ijhydene.2014.05.030. [13] LOWESMITH B J, MUMBY C, HANKINSON G, et al. Vented confined explosions involving methane/hydrogen mixtures [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2337–2343. DOI: 10.1016/j.ijhydene.2010.02.084. [14] SHANG R X, ZHUANG Z X, YANG Y, et al. Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution [J]. International Journal of Hydrogen Energy, 2022, 47(75): 32315–32329. DOI: 10.1016/j.ijhydene.2022.07.099. [15] GONDAL I A. Hydrogen integration in power-to-gas networks [J]. International Journal of Hydrogen Energy, 2019, 44(3): 1803–1815. DOI: 10.1016/j.ijhydene.2018.11.164. [16] SHANG R X, ZHANG Y, ZHU M M, et al. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15056–15067. DOI: 10.1016/j.ijhydene.2016.05.064. [17] ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032. [18] WANG J Y, LIANG Y T, ZHAO Z Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23887–23897. DOI: 10.1016/j.ijhydene.2022.05.152. [19] WANG D, JI C W, WANG S F, et al. Chemical effects of CO2 dilution on CH4 and H2 spherical flame [J]. Energy, 2019, 185: 316–326. DOI: 10.1016/j.energy.2019.07.032. [20] LUO Z M, ZHOU S Y, WANG T, et al. The weakening effect of the inhibition of CO2 on the explosion of HCNG with the increase of hydrogen: Experimental and chemical kinetic research [J]. International Journal of Hydrogen Energy, 2023, 48(82): 32179–32190. DOI: 10.1016/j.ijhydene.2023.05.029. [21] WANG M Z, WEN X P, DIAO S T, et al. Effect of obstacle position and equivalence ratio on syngas explosion characteristics [J]. International Journal of Hydrogen Energy, 2024, 56: 735–747. DOI: 10.1016/j.ijhydene.2023.12.235. [22] CHRISTOPHE C, GEOFFREY S. On the “Tulip Flame” Phenomenon [J]. Combustion and Flame, 1996(105): 225–238. DOI: 10.1016/0010-2180(95)00195-6. [23] XIAO H H, HOUIM R W, ORAN E S. Formation and evolution of distorted tulip flames [J]. Combustion and Flame, 2015, 162(11): 4084–4101. DOI: 10.1016/j.combustflame.2015.08.020. [24] XIAO H H, WANG Q S, SHEN X B, et al. An experimental study of distorted tulip flame formation in a closed duct [J]. Combustion and Flame, 2013, 160(9): 1725–1728. DOI: 10.1016/j.combustflame.2013.03.011. [25] LI T, HAMPP F, LINDSTEDT R P. Experimental study of turbulent explosions in hydrogen enriched syngas related fuels [J]. Process Safety and Environmental Protection, 2018, 116: 663–676. DOI: 10.1016/j.psep.2018.03.032. [26] BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes [J]. Combustion and Flame, 2007, 150(4): 263–276. DOI: 10.1016/j.combustflame.2007.01.004. [27] ZHENG K, SONG Z Y, SONG C, et al. Investigation on the explosion of ammonia/hydrogen/air in a closed duct by experiments and numerical simulations [J]. International Journal of Hydrogen Energy, 2024, 79: 1267–1277. DOI: 10.1016/j.ijhydene.2024.07.124. [28] GONZALEZ M. Acoustic instability of a premixed flame propagating in a tube [J]. Combustion and Flame, 1996, 107(3): 245–259. DOI: 10.1016/S0010-2180(96)00069-7. [29] SHEN X B, HE X C, SUN J H. A comparative study on premixed hydrogen–air and propane–air flame propagations with tulip distortion in a closed duct[J]. Fuel, 2015, 161. DOI: 10.1016/j.fuel.2015.08.043. [30] SHEN X B, ZHANG C, XIU G L, et al. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct [J]. Energy, 2019, 176: 265–271. DOI: 10.1016/j.energy.2019.03.193. [31] LEYER J C, MANSON N. Development of vibratory flame propagation in short closed tubes and vessels [J]. Symposium (International) on Combustion, 1971, 13(1): 551–558. DOI: 10.1016/S0082-0784(71)80056-5. [32] YANG W, YANG X F, ZHANG K, et al. Experimental study on the explosion flame propagation behavior of premixed CH4/H2/air mixtures with inert gas injection [J]. International Journal of Hydrogen Energy, 2024, 84: 106–117. DOI: 10.1016/j.ijhydene.2024.08.120. -