• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

非预混CO2喷射压力对掺氢天然气预混爆炸特性的影响

张玉春 杨文 张坤 蒋保平 阳旭峰

张玉春, 杨文, 张坤, 蒋保平, 阳旭峰. 非预混CO2喷射压力对掺氢天然气预混爆炸特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0048
引用本文: 张玉春, 杨文, 张坤, 蒋保平, 阳旭峰. 非预混CO2喷射压力对掺氢天然气预混爆炸特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0048
ZHANG Yuchun, YANG Wen, ZHANG Kun, JIANG Baoping, YANG Xufeng. Effects of non-premixed CO2 injection pressure on the premixed explosion characteristics of hydrogen-doped natural gas[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0048
Citation: ZHANG Yuchun, YANG Wen, ZHANG Kun, JIANG Baoping, YANG Xufeng. Effects of non-premixed CO2 injection pressure on the premixed explosion characteristics of hydrogen-doped natural gas[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0048

非预混CO2喷射压力对掺氢天然气预混爆炸特性的影响

doi: 10.11883/bzycj-2025-0048
基金项目: 隧道氢能源列车燃爆机制与灾变行为研究(U24A20172);国家自然科学基金(52278415, 52204241)
详细信息
    作者简介:

    张玉春(1980- ),男,博士,教授,zycfire@home.swjtu.edu.cn

    通讯作者:

    阳旭峰(1992- ),男,博士,副教授,xf_yang718@swjtu.edu.cn

  • 中图分类号: O383

Effects of non-premixed CO2 injection pressure on the premixed explosion characteristics of hydrogen-doped natural gas

  • 摘要: 煤制氢是煤炭能源低碳转型的有效方案,针对煤制氢通入天然气管网大规模输送过程中安全问题,研究非预混CO2喷射对掺氢天然气爆炸特性的影响。设计并搭建了爆炸实验平台,探究非预混CO2的喷射压力(0~1.00 MPa)和喷射时间(0~180 ms,喷射早于点火开启的时间)对爆炸火焰传播行为和压力特性的影响规律。结果表明:非预混CO2喷射显著影响甲烷/氢气/空气预混气爆炸行为。CO2喷射会引起湍流效应导致火焰褶皱和结构改变,从而使火焰传播速度和爆炸压力增大。当喷射时间固定时(如0或120 ms),增加喷射压力会引入更多的CO2,增强局部湍流和扰动,加剧火焰加速和爆炸后果。随着喷射时间增加,不同喷射压力下最大爆炸压力均呈先增后减的趋势。CO2喷射对爆炸的湍流促进作用和稀释作用相互竞争,并存在临界喷射时间。过多的CO2喷射时会增强它的稀释作用,削弱CO2喷射对爆炸的湍流扰动能力,降低爆炸强度。此外,较大的喷射压力有着更小的临界喷射时间,同时较大喷射压力下的最大爆炸压力对喷射时间的变化有着更高的敏感性。
  • 图  1  爆炸实验系统示意图

    Figure  1.  Schematic diagram of the explosion experimental system

    图  2  喷射时间为0 ms时火焰瞬态

    Figure  2.  Flame transient at injection duration is 0 ms

    图  3  喷射时间为120 ms时火焰瞬态

    Figure  3.  Flame transient at injection duration is 120 ms

    图  4  pi=0 MPa时火焰前沿位置和火焰传播速度的耦合关系

    Figure  4.  Coupling of flame front position and flame propagation velocity for pi=0 MPa

    图  5  pi= 1.00 MPa时火焰前沿位置和火焰传播速度的耦合关系

    Figure  5.  Coupling of flame front position and flame propagation velocity for pi=1.00 MPa

    图  6  火焰前沿位置随时间的变化关系

    Figure  6.  Variation of flame front position with time

    图  7  火焰传播速度随火焰前沿位置的变化关系

    Figure  7.  Variation of flame propagation velocity with flame front position

    图  8  爆炸压力变化曲线

    Figure  8.  Histories of explosion pressure

    图  9  不同CO2喷射压力下的最大爆炸压力和喷射时间的关系

    Figure  9.  Relation between maximum explosion pressure and injection duration at different CO2 injection pressures

    图  10  不同CO2喷射压力下最大爆炸压力和最大火 焰传播速度的关系

    Figure  10.  Relation between maximum explosion pressure and maximum flame propagation velocity at different CO2 injection pressures

    表  1  实验配置

    Table  1.   Experimental settings

    Φ φH2/% 喷射位置/mm pi/MPa 平均流量/(L·s−1)
    1.0 50 0(无喷射)
    250 0.50 1.33
    0.75 2.00
    1.00 3.33
    下载: 导出CSV
  • [1] 秦勇, 易同生, 周永锋, 等. 煤炭地下气化碳减排技术研究进展与未来探索 [J]. 煤炭学报, 2024, 49(1): 495–512. DOI: 10.13225/j.cnki.jccs.YH23.1329.

    QIN Y, YI T S, ZHOU Y F, et al. Research progress and future study of carbon emission reduction for UCG [J]. Journal of China Coal Society, 2024, 49(1): 495–512. DOI: 10.13225/j.cnki.jccs.YH23.1329.
    [2] 谭厚章, 王学斌, 杨富鑫, 等. 大型燃煤发电机组低碳技术进展 [J]. 煤炭学报, 2024, 49(2): 1052–1066. DOI: 10.13225/j.cnki.jccs.ZZ24.0060.

    TAN H Z, WANG X B, YANG F X, et al. Progress in low carbon technologies for large-scale coal-fired power plants [J]. Journal of China Coal Society, 2024, 49(2): 1052–1066. DOI: 10.13225/j.cnki.jccs.ZZ24.0060.
    [3] 洪皓. 煤炭制氢经济适用性分析 [J]. 能源与节能, 2020(12): 82–85. DOI: 10.16643/j.cnki.14-1360/td.2020.12.034.

    HONG H. Analysis on economic applicability of hydrogen production from coal [J]. Energy and Energy Conservation, 2020(12): 82–85. DOI: 10.16643/j.cnki.14-1360/td.2020.12.034.
    [4] 李刚. 煤制氢技术发展与应用 [J]. 科技创新与生产力, 2024, 45(11): 54–57. DOI: 10.3969/j.issn.1674-9146.2024.11.054.

    LI G. Development and application of coal based hydrogen production technology [J]. Sci-tech Innovation and Productivity, 2024, 45(11): 54–57. DOI: 10.3969/j.issn.1674-9146.2024.11.054.
    [5] ERDENER B C, SERGI B, GUERRA O J, et al. A review of technical and regulatory limits for hydrogen blending in natural gas pipelines [J]. International Journal of Hydrogen Energy, 2023, 48(14): 5595–5617. DOI: 10.1016/j.ijhydene.2022.10.254.
    [6] ZHANG H W, ZHAO J, LI J F, et al. Research progress on corrosion and hydrogen embrittlement in hydrogen–natural gas pipeline transportation [J]. Natural Gas Industry B, 2023, 10(6): 570–582.10. DOI: 10.1016/j.ngib.2023.11.001.
    [7] ARAVINDAN M, PRAVEEN KUMAR G, ARULANANDAM M K, et al. Multi-objective optimization and analysis of chemical kinetics properties: Exploring the impact of different hydrogen blending ratios on LPG and methane-air mixtures [J]. Energy Conversion and Management: X, 2024, 22: 100532. DOI: 10.1016/j.ecmx.2024.100532.
    [8] LO BASSO G, PASTORE L M, SGA RAMELLA A, et al. Recent progresses in H2NG blends use downstream power-to-gas policies application: an overview over the last decade [J]. International Journal of Hydrogen Energy, 2024, 51: 424–453. DOI: 10.1016/j.ijhydene.2023.06.141.
    [9] 罗振敏, 南凡, 孙亚丽, 等. 掺氢比和CO2对掺氢天然气爆炸特性的影响 [J/OL]. 爆炸与冲击, 2025: 1–14. DOI: 10.11883/bzycj-2024-0282.

    LUO Z M, NAN F, SUN Y L, et al. Effects of hydrogen ratio and CO2 on the explosion characteristics of hydrogen-doped natural gas [J/OL]. Explosion and Shock Waves, 2025: 1–14. DOI: 10.11883/bzycj-2024-0282.
    [10] 梅亮, 郭进, 黄时凯, 等. 密闭容器内氢气-甲烷-空气的爆炸特性 [J]. 含能材料, 2025, 33(3): 225–235. DOI: 10.11943/CJEM2024186.

    MEI L, GUO J, HUANG SK, et al. Explosion Characteristics of Hydrogen-Methane-Air in a Closed Vessel [J]. Chinese Journal of Energetic Materials, 2025, 33(3): 225–235. DOI: 10.11943/CJEM2024186.
    [11] WANG T, LIANG H, LIN J J, et al. The explosion thermal behavior of H2/CH4/air mixtures in a closed 20 L vessel [J]. International Journal of Hydrogen Energy, 2022, 47(2): 1390–1400. DOI: 10.1016/j.ijhydene.2021.10.092.
    [12] MA Q J, ZHANG Q, CHEN J C, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291–11298. DOI: 10.1016/j.ijhydene.2014.05.030.
    [13] LOWESMITH B J, MUMBY C, HANKINSON G, et al. Vented confined explosions involving methane/hydrogen mixtures [J]. International Journal of Hydrogen Energy, 2011, 36(3): 2337–2343. DOI: 10.1016/j.ijhydene.2010.02.084.
    [14] SHANG R X, ZHUANG Z X, YANG Y, et al. Laminar flame speed of H2/CH4/air mixtures with CO2 and N2 dilution [J]. International Journal of Hydrogen Energy, 2022, 47(75): 32315–32329. DOI: 10.1016/j.ijhydene.2022.07.099.
    [15] GONDAL I A. Hydrogen integration in power-to-gas networks [J]. International Journal of Hydrogen Energy, 2019, 44(3): 1803–1815. DOI: 10.1016/j.ijhydene.2018.11.164.
    [16] SHANG R X, ZHANG Y, ZHU M M, et al. Laminar flame speed of CO2 and N2 diluted H2/CO/air flames [J]. International Journal of Hydrogen Energy, 2016, 41(33): 15056–15067. DOI: 10.1016/j.ijhydene.2016.05.064.
    [17] ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032.
    [18] WANG J Y, LIANG Y T, ZHAO Z Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23887–23897. DOI: 10.1016/j.ijhydene.2022.05.152.
    [19] WANG D, JI C W, WANG S F, et al. Chemical effects of CO2 dilution on CH4 and H2 spherical flame [J]. Energy, 2019, 185: 316–326. DOI: 10.1016/j.energy.2019.07.032.
    [20] LUO Z M, ZHOU S Y, WANG T, et al. The weakening effect of the inhibition of CO2 on the explosion of HCNG with the increase of hydrogen: Experimental and chemical kinetic research [J]. International Journal of Hydrogen Energy, 2023, 48(82): 32179–32190. DOI: 10.1016/j.ijhydene.2023.05.029.
    [21] WANG M Z, WEN X P, DIAO S T, et al. Effect of obstacle position and equivalence ratio on syngas explosion characteristics [J]. International Journal of Hydrogen Energy, 2024, 56: 735–747. DOI: 10.1016/j.ijhydene.2023.12.235.
    [22] CHRISTOPHE C, GEOFFREY S. On the “Tulip Flame” Phenomenon [J]. Combustion and Flame, 1996(105): 225–238. DOI: 10.1016/0010-2180(95)00195-6.
    [23] XIAO H H, HOUIM R W, ORAN E S. Formation and evolution of distorted tulip flames [J]. Combustion and Flame, 2015, 162(11): 4084–4101. DOI: 10.1016/j.combustflame.2015.08.020.
    [24] XIAO H H, WANG Q S, SHEN X B, et al. An experimental study of distorted tulip flame formation in a closed duct [J]. Combustion and Flame, 2013, 160(9): 1725–1728. DOI: 10.1016/j.combustflame.2013.03.011.
    [25] LI T, HAMPP F, LINDSTEDT R P. Experimental study of turbulent explosions in hydrogen enriched syngas related fuels [J]. Process Safety and Environmental Protection, 2018, 116: 663–676. DOI: 10.1016/j.psep.2018.03.032.
    [26] BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning in tubes [J]. Combustion and Flame, 2007, 150(4): 263–276. DOI: 10.1016/j.combustflame.2007.01.004.
    [27] ZHENG K, SONG Z Y, SONG C, et al. Investigation on the explosion of ammonia/hydrogen/air in a closed duct by experiments and numerical simulations [J]. International Journal of Hydrogen Energy, 2024, 79: 1267–1277. DOI: 10.1016/j.ijhydene.2024.07.124.
    [28] GONZALEZ M. Acoustic instability of a premixed flame propagating in a tube [J]. Combustion and Flame, 1996, 107(3): 245–259. DOI: 10.1016/S0010-2180(96)00069-7.
    [29] SHEN X B, HE X C, SUN J H. A comparative study on premixed hydrogen–air and propane–air flame propagations with tulip distortion in a closed duct[J]. Fuel, 2015, 161. DOI: 10.1016/j.fuel.2015.08.043.
    [30] SHEN X B, ZHANG C, XIU G L, et al. Evolution of premixed stoichiometric hydrogen/air flame in a closed duct [J]. Energy, 2019, 176: 265–271. DOI: 10.1016/j.energy.2019.03.193.
    [31] LEYER J C, MANSON N. Development of vibratory flame propagation in short closed tubes and vessels [J]. Symposium (International) on Combustion, 1971, 13(1): 551–558. DOI: 10.1016/S0082-0784(71)80056-5.
    [32] YANG W, YANG X F, ZHANG K, et al. Experimental study on the explosion flame propagation behavior of premixed CH4/H2/air mixtures with inert gas injection [J]. International Journal of Hydrogen Energy, 2024, 84: 106–117. DOI: 10.1016/j.ijhydene.2024.08.120.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  19
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-19
  • 修回日期:  2025-06-06
  • 网络出版日期:  2025-06-06

目录

    /

    返回文章
    返回