[1] |
艾园林, 白书欣, 朱利安, 等. 铱的合金化改性研究现状 [J]. 材料导报, 2018, 32(S1): 405–409.AI Y L, BAI S X, ZHU L A, et al. Research status of alloying modification of iridium [J]. Materials Review, 2018, 32(S1): 405–409.
|
[2] |
李增峰, 张晗亮, 汤慧萍, 等. 铱合金的高温氧化行为 [J]. 金属热处理, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.LI Z F, ZHANG H L, TANG H P, et al. Oxidating behavior of iridium alloys at high temperature [J]. Heat Treatment of Metals, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.
|
[3] |
方镇, 王鑫, 张毅勇, 等. 铱及铱合金涂层的研究现状与展望 [J]. 稀有金属, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.FANG Z, WANG X, ZHANG Y Y, et al. Research status and prospects of Ir and Ir-alloy coatings [J]. Chinese Journal of Rare Metals, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.
|
[4] |
潘新东, 魏燕, 蔡宏中, 等. 铱及铱基合金多元化研究进展 [J]. 稀有金属材料与工程, 2018, 47(2): 711–716.PAN X D, WEI Y, CAI H Z, et al. Progress in research on the diversification of iridium and iridium based alloys [J]. Rare Metal Materials and Engineering, 2018, 47(2): 711–716.
|
[5] |
向长淑, 葛渊, 张晗亮, 等. 耐超高温铱合金强韧化技术研究进展 [J]. 材料导报, 2009, 23(7): 7–10.XIANG C S, GE Y, ZHANG H L, et al. Research progress in strengthening and toughening technology of iridium alloys for ultra-high temperature application [J]. Materials Review, 2009, 23(7): 7–10.
|
[6] |
庄严, 陈敬超, 吕连灏. 第一性原理研究铱基高温合金增韧机理 [J]. 材料导报, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.ZHUANG Y, CHEN J C, LÜ L H. First-principles study on toughening mechanisms of iridium-base super alloy [J]. Materials Review, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.
|
[7] |
李增峰, 葛渊, 李爱君, 等. Ir-W-Th铱合金的压力加工硬化 [J]. 金属热处理, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-6051.2016.03.033.LI Z F, GE Y, LI A J, et al. Work hardening of Ir-W-Th iridium alloy [J]. Heat Treatment of Metals, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-6051.2016.03.033.
|
[8] |
吴胜娜, 罗洪义, 武伟名, 等. 再入过程中的同位素热源可靠性评估 [J]. 原子能科学技术, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.WU S N, LUO H Y, WU W M, et al. Reliability evaluation of radioisotope heat unit in reentry process [J]. Atomic Energy Science and Technology, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.
|
[9] |
李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.LI S K, HU W J, XU W F, et al. Research progress on SHTB experiment technique at elevated temperature [J]. China Measurement & Test, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.
|
[10] |
张方举, 谢若泽, 胡文军, 等. 一种改进的金属材料的高温动态拉伸实验技术 [J]. 实验力学, 2011, 26(6): 750–754.ZHANG F J, XIE R Z, HU W J, et al. An improved high temperature dynamical tensile experimental technique for metal materials [J]. Journal of Experimental Mechanics, 2011, 26(6): 750–754.
|
[11] |
SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature testing of an iridium alloy in compression at high-strain rates [J]. Strain, 2014, 50(6): 539–546. DOI: 10.1111/str.12100.
|
[12] |
SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature tensile characterization of an iridium alloy with Kolsky tension bar techniques [J]. Journal of Dynamic Behavior of Materials, 2015, 1(3): 290–298. DOI: 10.1007/s40870-015-0022-6.
|
[13] |
李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
|
[14] |
ZHANG C, GUAN T H, REN T F, et al. Influences of SiC infiltration and coating on compressive mechanical behaviours of 2DC/SiC composites up to 1600℃ at wide-ranging strain rates [J]. Journal of the European Ceramic Society, 2022, 42(9): 3787–3801. DOI: 10.1016/j.jeurceramsoc.2022.02.042.
|
[15] |
WANG J J, GUO W G, LI P H, et al. Dynamic tensileproperties of a single crystal Nickel-base superalloy at hightemperatures measured with an improved SHTB technique [J]. Materials Science andEngineering: A, 2016, 670: 1–8. DOI: 10.1016/j.msea.2016.06.002.
|
[16] |
HEATHERLY L, GEORGE E P. Grain-boundary segregation of impurities in iridium and effects on mechanical properties [J]. Acta Materialia, 2001, 49(2): 289–298. DOI: 10.1016/S1359-6454(00)00313-X.
|
[17] |
MCKAMEY C G, GEORGE E P, LEE E H, et al. Impurity effects on high-temperature tensile ductility of iridium alloys at high strain rate [J]. Scripta Materialia, 1999, 42(1): 9–15. DOI: 10.1016/S1359-6462(99)00339-5.
|
[18] |
李奇颖, 张健康, 付全, 等. 应变速率和温度对Ir-W-Th合金力学性能的影响 [J]. 贵金属, 2024, 45(4): 22–27,36. DOI: 10.3969/j.issn.1004-0676.2024.04.004.LI Q Y, ZHANG J K, FU Q, et al. Effects of strain rate and temperature on the mechanical properties of Ir-W-Th alloy [J]. Precious Metals, 2024, 45(4): 22–27,36. DOI: 10.3969/j.issn.1004-0676.2024.04.004.
|
[19] |
郑磊. 奥氏体不锈钢A304晶界特征与晶界强度的关系[D]. 哈尔滨: 哈尔滨工业大学, 2009.ZHENG L. Relationship between grain boundary characters and grain boundary strength of austenitic stainless steel A304[D]. Harbin: Harbin Institute of Technology, 2009.
|