• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

铱合金在高温下的动态拉伸力学性能

陈军红 张方举 胡文军

陈军红, 张方举, 胡文军. 铱合金在高温下的动态拉伸力学性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0050
引用本文: 陈军红, 张方举, 胡文军. 铱合金在高温下的动态拉伸力学性能[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0050
CHEN Junhong, ZHANG Fangju, HU Wenjun. Dynamic high-temperature tensile characterization of an iridium alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0050
Citation: CHEN Junhong, ZHANG Fangju, HU Wenjun. Dynamic high-temperature tensile characterization of an iridium alloy[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0050

铱合金在高温下的动态拉伸力学性能

doi: 10.11883/bzycj-2025-0050
基金项目: 国家自然科学基金(12172344);
详细信息
    作者简介:

    陈军红(1987- ),男,博士,副研究员,chenjh@lnm.imech.ac.cn

    通讯作者:

    张方举(1970- ),男,本科,研究员,zhangfj@caep.cn

  • 中图分类号: O347.3; TN47

Dynamic high-temperature tensile characterization of an iridium alloy

  • 摘要: 基于大电流加热方式建立了小尺寸板状试样高温动态拉伸实验技术,解决了片状试样与波导杆之间有效连接、试样高温实现与温度保持、高温试样与波导杆冷接触时间精准控制三项关键技术。为获取铱合金高温动态拉伸力学性能,利用该实验技术对铱合金进行了103 s−1应变率下室温、600、900和1100 ℃下的拉伸实验。结果表明,当温度从室温上升到900 ℃时,铱合金拉伸强度下降了12%,延性增加了2倍,但当温度上升至1100 ℃时,铱合金拉伸强度下降了43%且延性增加了7.3倍。基于铱合金试样宏微观断裂形貌表征阐明了其变形机理。随着温度的升高,铱合金由沿晶断裂主控的断裂模式转变为晶粒高温软化断裂主控的断裂模式,晶界失效和晶粒高温软化屈服两者相互竞争,决定了铱合金的高温动态断裂行为。
  • 图  1  铱合金的显微组织

    Figure  1.  Microstructure of iridium alloy

    图  2  铱合金试样及夹具

    Figure  2.  Specimen of iridium alloy and fixture

    图  3  铱合金试样断电后温度随时间的变化

    Figure  3.  Temperature variation of iridium alloy after power off

    图  4  高温动态拉伸实验装置示意图

    Figure  4.  Illustration of high temperature dynamic tension device

    图  5  组装后的试样、水冷装置和电极

    Figure  5.  Assemblage of the specimen, water-cooling fixture and eletrode.

    图  6  铱合金在不同温度下的典型应力-应变曲线

    Figure  6.  Typical stress-strain curves of iridium alloyunder different temperatures.

    图  7  铱合金平均拉断强度随温度的变化

    Figure  7.  The variation of average failure strength with temperature.

    图  8  铱合金平均断裂应变随温度的变化

    Figure  8.  The variation of average failure strain with temperature.

    图  9  铱合金在室温、600、900和1100 ℃下的宏观断裂形貌

    Figure  9.  The macroscopic fracture morphologies of iridium alloy under room temperature, 600, 900 and 1100 ℃.

    图  10  铱合金在室温下的微观断裂形貌

    Figure  10.  The microscopic fracture morphologies of iridium alloy under room temperature

    图  11  铱合金在600 ℃下的微观断裂形貌

    Figure  11.  The microscopic fracture morphologies of iridium alloy under 600 ℃

    图  12  铱合金在900 ℃下的微观断裂形貌

    Figure  12.  The microscopic fracture morphologies of iridium alloy under 900 ℃

    图  13  铱合金在1100 ℃下的微观断裂形貌

    Figure  13.  The microscopic fracture morphologies of iridium alloy under 1100

  • [1] 艾园林, 白书欣, 朱利安, 等. 铱的合金化改性研究现状 [J]. 材料导报, 2018, 32(S1): 405–409.

    AI Y L, BAI S X, ZHU L A, et al. Research status of alloying modification of iridium [J]. Materials Review, 2018, 32(S1): 405–409.
    [2] 李增峰, 张晗亮, 汤慧萍, 等. 铱合金的高温氧化行为 [J]. 金属热处理, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.

    LI Z F, ZHANG H L, TANG H P, et al. Oxidating behavior of iridium alloys at high temperature [J]. Heat Treatment of Metals, 2012, 37(10): 12–16. DOI: 10.13251/j.issn.0254-6051.2012.10.021.
    [3] 方镇, 王鑫, 张毅勇, 等. 铱及铱合金涂层的研究现状与展望 [J]. 稀有金属, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.

    FANG Z, WANG X, ZHANG Y Y, et al. Research status and prospects of Ir and Ir-alloy coatings [J]. Chinese Journal of Rare Metals, 2024, 48(4): 575–594. DOI: 10.13373/j.cnki.cjrm.XY22120004.
    [4] 潘新东, 魏燕, 蔡宏中, 等. 铱及铱基合金多元化研究进展 [J]. 稀有金属材料与工程, 2018, 47(2): 711–716.

    PAN X D, WEI Y, CAI H Z, et al. Progress in research on the diversification of iridium and iridium based alloys [J]. Rare Metal Materials and Engineering, 2018, 47(2): 711–716.
    [5] 向长淑, 葛渊, 张晗亮, 等. 耐超高温铱合金强韧化技术研究进展 [J]. 材料导报, 2009, 23(7): 7–10.

    XIANG C S, GE Y, ZHANG H L, et al. Research progress in strengthening and toughening technology of iridium alloys for ultra-high temperature application [J]. Materials Review, 2009, 23(7): 7–10.
    [6] 庄严, 陈敬超, 吕连灏. 第一性原理研究铱基高温合金增韧机理 [J]. 材料导报, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.

    ZHUANG Y, CHEN J C, LÜ L H. First-principles study on toughening mechanisms of iridium-base super alloy [J]. Materials Review, 2014, 28(11): 138–143. DOI: 10.11896/J.issn.1005-023X.2014.22.032.
    [7] 李增峰, 葛渊, 李爱君, 等. Ir-W-Th铱合金的压力加工硬化 [J]. 金属热处理, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-6051.2016.03.033.

    LI Z F, GE Y, LI A J, et al. Work hardening of Ir-W-Th iridium alloy [J]. Heat Treatment of Metals, 2016, 41(3): 151–154. DOI: 10.13251/j.issn.0254-6051.2016.03.033.
    [8] 吴胜娜, 罗洪义, 武伟名, 等. 再入过程中的同位素热源可靠性评估 [J]. 原子能科学技术, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.

    WU S N, LUO H Y, WU W M, et al. Reliability evaluation of radioisotope heat unit in reentry process [J]. Atomic Energy Science and Technology, 2020, 54(2): 215–221. DOI: 10.7538/yzk.2020.54.02.0215.
    [9] 李尚昆, 胡文军, 徐伟芳, 等. 高温霍普金森拉杆实验技术研究进展 [J]. 中国测试, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.

    LI S K, HU W J, XU W F, et al. Research progress on SHTB experiment technique at elevated temperature [J]. China Measurement & Test, 2018, 44(10): 35–42. DOI: 10.11857/j.issn.1674-5124.2018.10.006.
    [10] 张方举, 谢若泽, 胡文军, 等. 一种改进的金属材料的高温动态拉伸实验技术 [J]. 实验力学, 2011, 26(6): 750–754.

    ZHANG F J, XIE R Z, HU W J, et al. An improved high temperature dynamical tensile experimental technique for metal materials [J]. Journal of Experimental Mechanics, 2011, 26(6): 750–754.
    [11] SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature testing of an iridium alloy in compression at high-strain rates [J]. Strain, 2014, 50(6): 539–546. DOI: 10.1111/str.12100.
    [12] SONG B, NELSON K, LIPINSKI R, et al. Dynamic high-temperature tensile characterization of an iridium alloy with Kolsky tension bar techniques [J]. Journal of Dynamic Behavior of Materials, 2015, 1(3): 290–298. DOI: 10.1007/s40870-015-0022-6.
    [13] 李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.

    LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
    [14] ZHANG C, GUAN T H, REN T F, et al. Influences of SiC infiltration and coating on compressive mechanical behaviours of 2DC/SiC composites up to 1600℃ at wide-ranging strain rates [J]. Journal of the European Ceramic Society, 2022, 42(9): 3787–3801. DOI: 10.1016/j.jeurceramsoc.2022.02.042.
    [15] WANG J J, GUO W G, LI P H, et al. Dynamic tensileproperties of a single crystal Nickel-base superalloy at hightemperatures measured with an improved SHTB technique [J]. Materials Science andEngineering: A, 2016, 670: 1–8. DOI: 10.1016/j.msea.2016.06.002.
    [16] HEATHERLY L, GEORGE E P. Grain-boundary segregation of impurities in iridium and effects on mechanical properties [J]. Acta Materialia, 2001, 49(2): 289–298. DOI: 10.1016/S1359-6454(00)00313-X.
    [17] MCKAMEY C G, GEORGE E P, LEE E H, et al. Impurity effects on high-temperature tensile ductility of iridium alloys at high strain rate [J]. Scripta Materialia, 1999, 42(1): 9–15. DOI: 10.1016/S1359-6462(99)00339-5.
    [18] 李奇颖, 张健康, 付全, 等. 应变速率和温度对Ir-W-Th合金力学性能的影响 [J]. 贵金属, 2024, 45(4): 22–27,36. DOI: 10.3969/j.issn.1004-0676.2024.04.004.

    LI Q Y, ZHANG J K, FU Q, et al. Effects of strain rate and temperature on the mechanical properties of Ir-W-Th alloy [J]. Precious Metals, 2024, 45(4): 22–27,36. DOI: 10.3969/j.issn.1004-0676.2024.04.004.
    [19] 郑磊. 奥氏体不锈钢A304晶界特征与晶界强度的关系[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    ZHENG L. Relationship between grain boundary characters and grain boundary strength of austenitic stainless steel A304[D]. Harbin: Harbin Institute of Technology, 2009.
  • 加载中
图(13)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  17
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-16
  • 修回日期:  2025-06-07
  • 网络出版日期:  2025-06-13

目录

    /

    返回文章
    返回