The effect of polyurea coatings on spalling and breach of reinforced concrete slabs under contact explosion
-
摘要: 为研究聚脲涂层对钢筋混凝土(reinforced concrete,RC)基板层裂和贯穿的影响,分析了压缩波在混凝土-聚脲界面传播过程及混凝土层裂过程,提出背面喷涂聚脲RC基板的层裂解析模型。基于该模型,定量分析了聚脲涂层对RC基板临界层裂和贯穿的影响,提出无涂层RC板的贯穿预估经验方法可扩展应用于背面喷涂聚脲的RC基板,并通过学者们报道的接触爆炸试验进行验证。结果表明:聚脲涂层会对RC基板背面层裂过程产生影响,紧邻混凝土-聚脲界面的净应力波为压缩波,而在更深处的混凝土中,净应力波为拉伸波;聚脲涂层仅影响RC基板的首次层裂,首次层裂后的层裂过程与无涂层RC板相同;在发生临界层裂时,聚脲涂层提高了RC基板的临界层裂抗力,但层裂深度会增加;在发生贯穿时,聚脲涂层减少了RC基板的层裂次数,但对总层裂深度和贯穿的影响较小;无涂层RC板的贯穿预估经验方法可较好地预估背面喷涂聚脲RC基板的贯穿破坏。Abstract: In recent years, polyurea-coated reinforced concrete (RC) slabs have been extensively studied both experimentally and numerically for structural strengthening against contact explosions. However, theoretical investigations remain limited, particularly concerning the impact of polyurea on the local damages of the RC substrates. In this paper, an analytical model based on stress wave propagation theory was proposed to (a) investigate the reflection of compression waves at the backside of the RC substrate slab and (b) predict the spalling depth. Utilizing this analytical model, a quantitative and detailed discussion was presented regarding the effect of the polyurea on the critical spalling and breach of the RC substrate slab. Furthermore, the applicability of the empirical breach prediction, originally developed for uncoated RC slabs, was validated through existing experiments to predict the breach of polyurea-coated RC substrate slabs. The results indicate that polyurea affects the spalling process of the RC substrate slabs. Specifically, the net stress wave adjacent to the concrete-polyurea interface is a compression wave, while it transitions to a tensile wave in the deeper concrete. Polyurea primarily impacts the first spall of the RC substrate slab; subsequent spalling processes after the first spall align with those observed in uncoated RC slabs. Upon the occurrence of critical spalling, polyurea enhances the critical spalling resistance of RC slabs, although it significantly increases the spalling depth. Conversely, when a breach occurs, polyurea reduces the number of spalls but minimally affects on the total spalling depth. Based on these findings, the empirical method for predicting breaches of uncoated RC slabs can effectively be applied to predict the breach of RC substrate slabs coated with polyurea. The test results from more than twenty contact explosion experiments are consistent with the predicted outcomes, thereby validating the effectiveness of the analytical model and providing a method for estimating the breach of polyurea-coated RC substrate slabs.
-
Key words:
- contact explosion /
- reinforced concrete slab /
- polyurea coating /
- anti-blast performance /
- analytical model /
- spall /
- breach
-
表 1 接触爆炸试验中所用聚脲材料物理力学性能
Table 1. Physical and mechanical properties of polyurea used in contact explosion tests
聚脲材料来源 断裂伸长率/% 弹性模量/MPa 拉伸强度/MPa 密度/(g·cm−3) 粘结强度/MPa 文献[1] 120 161 / 1.120 >混凝土抗拉强度(1) 文献[12,13] 451 84.01 22.6~25.4 0.977 5或混凝土破坏(2) 文献[14] 105 234 18 1.121 / 文献[9,16-21] 465 / ≥25 1.02 ≥3.5 文献[15] ≥400 / ≥25 1.068 ≥2.5 注:(1) 文献[1]未报道粘结强度,但作者指出粘结强度大于混凝土抗拉强度。 (2) 文献[12]指出底漆与混凝土基底附着强度可达5 MPa。常规C40混凝土的抗拉强度通常低于5 MPa,此处明确为5 MPa或混凝土破坏。 表 2 背面喷涂聚脲RC板接触爆炸试验及基板贯穿预估结果
Table 2. Contact explosion tests and breach prediction results for polyurea-coated RC slabs
试验来源 试验编号 RC基板 聚脲涂层
厚度/mmTNT药量/kg 试验结果 Morishita公式
预估结果厚度/mm 配筋率(1)/% 比例板厚Tz/(cm·g-1/3) 文献[1] P-1 60 0.92 1.05 3.9 0.189 贯穿 贯穿 文献[17] P1-1 150 1.13 1.78 4 0.6 贯穿 贯穿 P1-2 150 1.50 4 1.0 贯穿 贯穿 P2-1 150 1.23 6 1.8 贯穿 贯穿 P2-2 150 1.19 6 2.0 贯穿 贯穿 P3-1 150 1.19 8 2.0 贯穿 贯穿 P3-2 150 1.15 8 2.2 贯穿 贯穿 P4-1 150 1.12 10 2.4 贯穿 贯穿 P4-2 150 1.09 10 2.6 贯穿 贯穿 P5-1 150 1.04 12 3.0 贯穿 贯穿 P5-2 150 0.98 12 3.6 贯穿 贯穿 文献[21] RCP1 300 0.94 2.08 10 3.0 未贯穿 未贯穿 RCP2 300 1.75 10 5.0 未贯穿 贯穿 文献[15] T1 200 0.90 2.15 2 0.8 未贯穿 未贯穿 T2 200 2.15 4 0.8 未贯穿 未贯穿 T3 200 2.15 6 0.8 未贯穿 未贯穿 T4 200 2.15 8 0.8 未贯穿 未贯穿 T5 200 2.15 10 0.8 未贯穿 未贯穿 文献[9] T1 150 1.44 1.62 4.5 0.8 贯穿 贯穿 T2 150 1.62 9.6 0.8 贯穿 贯穿 T3 150 1.12 14.8 2.4 贯穿 贯穿 注:(1) Morishita等[41]给出的配筋率由钢筋截面面积除以RC板截面面积计算得到。 -
[1] SHI S, LIAO Y, PENG X, et al. Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact explosion [J]. International Journal of Impact Engineering., 2019, 132: 103335. DOI: 10.1016/j.ijimpeng.2019.103335. [2] TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344. [3] 杨建超, 王幸, 张强, 等. 钢筋混凝土板震塌碎片特性试验 [J]. 科学技术与工程, 2021, 21(5): 1690–1695. DOI: 10.3969/j.issn.1671-1815.2021.05.002.YANG J C, WANG X, ZHANG Q, et al. Experimental study on the fragments characteristics of reinforced concrete slab caused by collapsing [J]. Science Technology and Engineering, 2021, 21(5): 1690–1695. DOI: 10.3969/j.issn.1671-1815.2021.05.002. [4] HUPFAUF M, GEBBEKEN N. Secondary debris resulting from concrete slabs subjected to contact detonations [J]. Advances in Structural Engineering, 2022, 25(7): 1373–1385. DOI: 10.1177/13694332221080614. [5] GUO S, HE X, LIU F, et al. Fragmentation behavior and velocity formula for secondary fragments from RC slabs during contact explosions [J]. Engineering Failure Analysis, 2025, 167: 109047. DOI: 10.1016/j.engfailanal.2024.109047. [6] US Department of Defense. Structures to resist the effects of accidental explosions, with change 2: UFC 3-340-02 [S]. Washington: US Department of Defense, 2008: 583-600. [7] VAN AMELSFORT R, WEERHEIJM J. The failure mode of concrete slabs due to contact charges [R]. Rijswijk (Netherlands): Prins Maurits Laboratory, 1988. [8] 颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报 (自然科学版), 2008, 9(1): 52–56. DOI: 10.7666/j.issn.1009-3443.20080111.YAN H C, FANG Q, CHEN L. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology, 2008, 9(1): 52–56. DOI: 10.7666/j.issn.1009-3443.20080111. [9] GUO S, LIU F, CHEN J, et al. Dynamic response and blast resistance mechanism of polyurea coating on RC slab during contact explosions [J]. Construction and Building Materials, 2024, 411: 134271. DOI: 10.1016/j.conbuildmat.2023.134271. [10] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review [J]. Royal Society of Chemistry Advances, 2016, 6(111): 109706–109717. DOI: 10.1039/c6ra23866a. [11] RAMAN S N, NGO T, MENDIS P, et al. Elastomeric polymers for retrofitting of reinforced concrete structures against the explosive effects of blast [J]. Advances in Materials Science and Engineering, 2012, 2012(1): 754142. DOI: 10.1155/2012/754142. [12] 方志强, 吕平, 张锐, 等. 抗爆型聚脲涂层的性能及其抗爆机理 [J]. 高压物理学报, 2022, 36(2): 43–52. DOI: 10.11858/gywlxb.20210840.FANG Z, LYU P, ZHANG R, et al. Blast-resistant properties and mechanism of anti-explosion polyurea coating [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 43–52. DOI: 10.11858/gywlxb.20210840. [13] 张锐, 黄微波, 吕平, 等. 抗爆型聚脲涂层性能及其防护钢筋混凝土板接触爆炸与断裂机制研究 [J]. 工程科学与技术, 2022, 54(5): 1–10. DOI: 10.15961/j.jsuese.202100619.ZHANG R, HUANG W B, LYU P, et al. Study on the performance of blast-mitigation polyurea and fracture mechanism of the coated reinforced concrete slabs under contact explosion [J]. Science Technology and Engineering, 2022, 54(5): 1–10. DOI: 10.15961/j.jsuese.202100619. [14] LIM B, HONG P J. Sprayed-on polymer as concrete spall shield [J]. Solid State Phenomena, 2008, 136: 145–152. DOI: 10.4028/www.scientific.net/SSP.136.145. [15] MU M, LIU F, LI J, et al. Influence of modified polyurea coating thickness on the blast resistance of RC slab [J]. Structures, 2024, 67: 107009. DOI: 10.1016/j.istruc.2024.107009. [16] WANG W, YANG J, WANG J, et al. Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions [J]. International Journal of Impact Engineering., 2021, 149: 103777. DOI: 10.1016/j.ijimpeng.2020.103777. [17] 汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 14-23. DOI: 10.11883/bzycj-2020-0180.WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion And Shock Waves, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180. [18] WANG W, HUO Q, YANG J, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. DOI: 10.1016/j.dt.2021.07.005. [19] 杨建超, 汪剑辉, 陈力, 等. POZD涂层钢筋混凝土板抗震塌性能 [J]. 兵工学报, 2021, 42(1): 133–140. DOI: 10.3969/j.issn.1000-1093.2021.01.015.YANG J C, WANG J H, CHEN L, et al. Anti-collapsing performance of POZD coated reinforced concrete slab [J]. Acta Armamentarii, 2021, 42(1): 133–140. DOI: 10.3969/j.issn.1000-1093.2021.01.015. [20] 杨建超, 汪剑辉, 王幸, 等. 聚异氰氨酸脂噁唑烷弹性涂层钢筋混凝土板抗震塌机理 [J]. 科学技术与工程, 2022, 22(4): 1338–1343. DOI: 10.3969/j.issn.1671-1815.2022.04.005.YANG J C, WANG J H, WANG X, et al. Anti-collapsing mechanism of reinforced concrete slab with polyisocyanate-oxazodone elastic coating [J]. Science Technology and Engineering, 2022, 22(4): 1338–1343. DOI: 10.3969/j.issn.1671-1815.2022.04.005. [21] 徐赵威, 汪维, 李奕硕, 等. 接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能 [J]. 爆炸与冲击. DOI: 10.11883/bzycj-2024-0083.XU Z W, WANG W, LI Y S, et al. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion [J]. Explosion And Shock Waves. DOI: 10.11883/bzycj-2024-0083. [22] 胡玉峰, 宋殿义, 谭清华, 等. 接触爆炸作用下RC单向板抗爆加固的试验研究 [J]. 防护工程, 2019, 41(5): 1–7.HU Y F, SONG D Y, TAN Q H. Experimental investigation on anti-explosion strengthening of one-way RC slabs under contact explosion [J]. Protective Engineering, 2019, 41(5): 1–7. [23] MCVAY M K. Spall damage of concrete structures [R]. Technical report SL-88-22. Structures Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi, 1988. [24] TU H, FUNG T C, TAN K H, et al. An analytical model to predict spalling and breaching of concrete plates under contact detonation [J]. International Journal of Impact Engineering., 2022, 160: 104075. DOI: 10.1016/j.ijimpeng.2021.104075. [25] GEBBEKEN N, KRAUTHAMMER T, HUPFAUF M. Understanding the dynamic response of concrete to loading: Practical examples [M] // Understanding the tensile properties of concrete. Woodhead Publishing, 2024: 379-418. DOI: 10.1016/B978-0-443-15593-2.00008-7. [26] HUPFAUF M, GEBBEKEN N. Secondary debris resulting from concrete slabs subjected to contact detonations–Spatial velocity distribution and influence of steel fibers [J]. International Journal of Protective Structures, 2024, 0(0): 1–22. DOI: 10.1177/20414196241264026. [27] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion And Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11. [28] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion And Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041. [29] 孙玉祥, 王杰, 武海军, 等. 混凝土高压状态方程实验与数值模拟研究 [J]. 爆炸与冲击, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.SUN Y X, WANG J, WU H J, et al. Experiment and simulation on high-pressure equation of state for concrete [J]. Explosion And Shock Waves, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002. [30] HARTMANN T, PIETASCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1(4): 443–468. DOI: 10.1260/2041-4196.1.4.443. [31] RIEDEL W, MAYRHOFER C, THOMA K, et al. Engineering and numerical tools for explosion protection of reinforced concrete [J]. International Journal of Protective Structures, 2010, 1(1): 85–102. DOI: 10.1260/2041-4196.1.1.85. [32] KOT C A, VALENTIN R A, MCLENNAN D A, et al. Effects of air blast on power plant structures and components [R]. Argonne National Lab. (ANL), Argonne, IL (United States), 1978. DOI: 10.2172/6611172. [33] RIEDEL W, FORQUIN P. Modelling the response of concrete structures to dynamic loading [M]//Understanding the Tensile Properties of Concrete. Woodhead Publishing, 2013: 125–142e. DOI: 10.1533/9780857097538.2.125. [34] HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis [C]//Proceedings of the 7th international conference on shock and impact loads on structures, Beijing, China. 2007: 753–768. [35] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003. [36] MOCK J W, BARTYCZAK S, LEE G, et al. Dynamic properties of polyurea 1000 [C]//AIP Conference Proceedings. American Institute of Physics, 2009, 1195(1): 1241–1244. DOI: 10.1063/1.3295029. [37] JORDAN J L, CASEM D T, ROBINETTE J. Hugoniot and dynamic strength in polyurea [J]. Journal of Applied Physics, 2022, 131(16). DOI: 10.1063/5.0082477. [38] CARTER W J, MARSH S P. Hugoniot equation of state of polymers [R]. Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1995. DOI: 10.2172/95183. [39] 郑全平, 钱七虎, 周早生, 等. 钢筋混凝土震塌厚度计算公式对比研究 [J]. 工程力学, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.ZHENG Q P, QIAN Q H, ZHOU Z S, et al. Comparative analysis of scabbing thickness estimation of reinforced concrete structures [J]. Engineering Mechanics, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009. [40] GEBBEKEN N, GREULICH S, PIETZSCH A, et al. The engineering-tool XploSim to determine the effects of explosive loadings on reinforced and fibre reinforced concrete structures [C]//Proc. of 18th Int. Symp. Military Aspects of Blast and Shock. 2004. [41] MORISHITA M, TANAKA H, ANDO T, et al. Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations [J]. Concrete Research and Technology, 2004, 15(2): 89–98. DOI: 10.3151/crt1990.15.2_89. -