• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

接触爆炸条件下聚脲涂层对RC基板层裂和贯穿的影响

郭士旭 何翔 刘飞 杨建超 陈经 孙山川

郭士旭, 何翔, 刘飞, 杨建超, 陈经, 孙山川. 接触爆炸条件下聚脲涂层对RC基板层裂和贯穿的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0054
引用本文: 郭士旭, 何翔, 刘飞, 杨建超, 陈经, 孙山川. 接触爆炸条件下聚脲涂层对RC基板层裂和贯穿的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0054
GUO Shixu, HE Xiang, LIU Fei, YANG Jianchao, CHEN Jing, SUN Shanchuan. The effect of polyurea coatings on spalling and breach of reinforced concrete slabs under contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0054
Citation: GUO Shixu, HE Xiang, LIU Fei, YANG Jianchao, CHEN Jing, SUN Shanchuan. The effect of polyurea coatings on spalling and breach of reinforced concrete slabs under contact explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0054

接触爆炸条件下聚脲涂层对RC基板层裂和贯穿的影响

doi: 10.11883/bzycj-2025-0054
基金项目: 中原科技创新领军人才项目(No. 234200510016)
详细信息
    作者简介:

    郭士旭(1987- ),男,博士研究生,讲师,shixu@lit.edu.cn

    通讯作者:

    何 翔(1966- ),男,博士,研究员,XiangHe1396@163.com

  • 中图分类号: O383

The effect of polyurea coatings on spalling and breach of reinforced concrete slabs under contact explosion

  • 摘要: 为研究聚脲涂层对钢筋混凝土(reinforced concrete,RC)基板层裂和贯穿的影响,分析了压缩波在混凝土-聚脲界面传播过程及混凝土层裂过程,提出背面喷涂聚脲RC基板的层裂解析模型。基于该模型,定量分析了聚脲涂层对RC基板临界层裂和贯穿的影响,提出无涂层RC板的贯穿预估经验方法可扩展应用于背面喷涂聚脲的RC基板,并通过学者们报道的接触爆炸试验进行验证。结果表明:聚脲涂层会对RC基板背面层裂过程产生影响,紧邻混凝土-聚脲界面的净应力波为压缩波,而在更深处的混凝土中,净应力波为拉伸波;聚脲涂层仅影响RC基板的首次层裂,首次层裂后的层裂过程与无涂层RC板相同;在发生临界层裂时,聚脲涂层提高了RC基板的临界层裂抗力,但层裂深度会增加;在发生贯穿时,聚脲涂层减少了RC基板的层裂次数,但对总层裂深度和贯穿的影响较小;无涂层RC板的贯穿预估经验方法可较好地预估背面喷涂聚脲RC基板的贯穿破坏。
  • 图  1  RC裸板和背面喷涂聚脲RC板中爆炸波作用过程

    Figure  1.  Shock wave action process in RC slabs and polyurea-coated RC slabs

    图  2  应力波在RC板背面的反射

    Figure  2.  Stress wave reflection on the backside of RC slab

    图  3  混凝土-空气界面处应力波反射和混凝土层裂

    Figure  3.  Stress wave reflection and concrete spalling at the concrete-air interface

    图  4  背面喷涂聚脲RC基板中应力波传播

    Figure  4.  Stress wave propagation in polyurea-coated RC slab

    图  5  混凝土-聚脲界面处应力波反射和混凝土层裂

    Figure  5.  Stress wave reflection and concrete spalling at the concrete-polyurea interface

    图  6  算例中RC裸板和背面喷涂聚脲RC板每次层裂的深度

    Figure  6.  Depth of each spalling for RC slab and polyurea-coated RC slab in the example

    图  7  背面喷涂聚脲RC板与RC裸板剖面形貌

    Figure  7.  Profile morphology of polyurea-coated and bare RC slabs

    表  1  接触爆炸试验中所用聚脲材料物理力学性能

    Table  1.   Physical and mechanical properties of polyurea used in contact explosion tests

    聚脲材料来源 断裂伸长率/% 弹性模量/MPa 拉伸强度/MPa 密度/(g·cm−3) 粘结强度/MPa
    文献[1] 120 161 / 1.120 >混凝土抗拉强度(1)
    文献[12,13] 451 84.01 22.6~25.4 0.977 5或混凝土破坏(2)
    文献[14] 105 234 18 1.121 /
    文献[9,16-21] 465 / ≥25 1.02 ≥3.5
    文献[15] ≥400 / ≥25 1.068 ≥2.5
     注:(1) 文献[1]未报道粘结强度,但作者指出粘结强度大于混凝土抗拉强度。 (2) 文献[12]指出底漆与混凝土基底附着强度可达5 MPa。常规C40混凝土的抗拉强度通常低于5 MPa,此处明确为5 MPa或混凝土破坏。
    下载: 导出CSV

    表  2  背面喷涂聚脲RC板接触爆炸试验及基板贯穿预估结果

    Table  2.   Contact explosion tests and breach prediction results for polyurea-coated RC slabs

    试验来源 试验编号 RC基板 聚脲涂层
    厚度/mm
    TNT药量/kg 试验结果 Morishita公式
    预估结果
    厚度/mm 配筋率(1)/% 比例板厚Tz/(cm·g-1/3)
    文献[1] P-1 60 0.92 1.05 3.9 0.189 贯穿 贯穿
    文献[17] P1-1 150 1.13 1.78 4 0.6 贯穿 贯穿
    P1-2 150 1.50 4 1.0 贯穿 贯穿
    P2-1 150 1.23 6 1.8 贯穿 贯穿
    P2-2 150 1.19 6 2.0 贯穿 贯穿
    P3-1 150 1.19 8 2.0 贯穿 贯穿
    P3-2 150 1.15 8 2.2 贯穿 贯穿
    P4-1 150 1.12 10 2.4 贯穿 贯穿
    P4-2 150 1.09 10 2.6 贯穿 贯穿
    P5-1 150 1.04 12 3.0 贯穿 贯穿
    P5-2 150 0.98 12 3.6 贯穿 贯穿
    文献[21] RCP1 300 0.94 2.08 10 3.0 未贯穿 未贯穿
    RCP2 300 1.75 10 5.0 未贯穿 贯穿
    文献[15] T1 200 0.90 2.15 2 0.8 未贯穿 未贯穿
    T2 200 2.15 4 0.8 未贯穿 未贯穿
    T3 200 2.15 6 0.8 未贯穿 未贯穿
    T4 200 2.15 8 0.8 未贯穿 未贯穿
    T5 200 2.15 10 0.8 未贯穿 未贯穿
    文献[9] T1 150 1.44 1.62 4.5 0.8 贯穿 贯穿
    T2 150 1.62 9.6 0.8 贯穿 贯穿
    T3 150 1.12 14.8 2.4 贯穿 贯穿
     注:(1) Morishita等[41]给出的配筋率由钢筋截面面积除以RC板截面面积计算得到。
    下载: 导出CSV
  • [1] SHI S, LIAO Y, PENG X, et al. Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact explosion [J]. International Journal of Impact Engineering., 2019, 132: 103335. DOI: 10.1016/j.ijimpeng.2019.103335.
    [2] TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
    [3] 杨建超, 王幸, 张强, 等. 钢筋混凝土板震塌碎片特性试验 [J]. 科学技术与工程, 2021, 21(5): 1690–1695. DOI: 10.3969/j.issn.1671-1815.2021.05.002.

    YANG J C, WANG X, ZHANG Q, et al. Experimental study on the fragments characteristics of reinforced concrete slab caused by collapsing [J]. Science Technology and Engineering, 2021, 21(5): 1690–1695. DOI: 10.3969/j.issn.1671-1815.2021.05.002.
    [4] HUPFAUF M, GEBBEKEN N. Secondary debris resulting from concrete slabs subjected to contact detonations [J]. Advances in Structural Engineering, 2022, 25(7): 1373–1385. DOI: 10.1177/13694332221080614.
    [5] GUO S, HE X, LIU F, et al. Fragmentation behavior and velocity formula for secondary fragments from RC slabs during contact explosions [J]. Engineering Failure Analysis, 2025, 167: 109047. DOI: 10.1016/j.engfailanal.2024.109047.
    [6] US Department of Defense. Structures to resist the effects of accidental explosions, with change 2: UFC 3-340-02 [S]. Washington: US Department of Defense, 2008: 583-600.
    [7] VAN AMELSFORT R, WEERHEIJM J. The failure mode of concrete slabs due to contact charges [R]. Rijswijk (Netherlands): Prins Maurits Laboratory, 1988.
    [8] 颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报 (自然科学版), 2008, 9(1): 52–56. DOI: 10.7666/j.issn.1009-3443.20080111.

    YAN H C, FANG Q, CHEN L. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology, 2008, 9(1): 52–56. DOI: 10.7666/j.issn.1009-3443.20080111.
    [9] GUO S, LIU F, CHEN J, et al. Dynamic response and blast resistance mechanism of polyurea coating on RC slab during contact explosions [J]. Construction and Building Materials, 2024, 411: 134271. DOI: 10.1016/j.conbuildmat.2023.134271.
    [10] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review [J]. Royal Society of Chemistry Advances, 2016, 6(111): 109706–109717. DOI: 10.1039/c6ra23866a.
    [11] RAMAN S N, NGO T, MENDIS P, et al. Elastomeric polymers for retrofitting of reinforced concrete structures against the explosive effects of blast [J]. Advances in Materials Science and Engineering, 2012, 2012(1): 754142. DOI: 10.1155/2012/754142.
    [12] 方志强, 吕平, 张锐, 等. 抗爆型聚脲涂层的性能及其抗爆机理 [J]. 高压物理学报, 2022, 36(2): 43–52. DOI: 10.11858/gywlxb.20210840.

    FANG Z, LYU P, ZHANG R, et al. Blast-resistant properties and mechanism of anti-explosion polyurea coating [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 43–52. DOI: 10.11858/gywlxb.20210840.
    [13] 张锐, 黄微波, 吕平, 等. 抗爆型聚脲涂层性能及其防护钢筋混凝土板接触爆炸与断裂机制研究 [J]. 工程科学与技术, 2022, 54(5): 1–10. DOI: 10.15961/j.jsuese.202100619.

    ZHANG R, HUANG W B, LYU P, et al. Study on the performance of blast-mitigation polyurea and fracture mechanism of the coated reinforced concrete slabs under contact explosion [J]. Science Technology and Engineering, 2022, 54(5): 1–10. DOI: 10.15961/j.jsuese.202100619.
    [14] LIM B, HONG P J. Sprayed-on polymer as concrete spall shield [J]. Solid State Phenomena, 2008, 136: 145–152. DOI: 10.4028/www.scientific.net/SSP.136.145.
    [15] MU M, LIU F, LI J, et al. Influence of modified polyurea coating thickness on the blast resistance of RC slab [J]. Structures, 2024, 67: 107009. DOI: 10.1016/j.istruc.2024.107009.
    [16] WANG W, YANG J, WANG J, et al. Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions [J]. International Journal of Impact Engineering., 2021, 149: 103777. DOI: 10.1016/j.ijimpeng.2020.103777.
    [17] 汪维, 杨建超, 汪剑辉, 等. POZD涂层方形钢筋混凝土板抗接触爆炸试验研究 [J]. 爆炸与冲击, 2020, 40(12): 14-23. DOI: 10.11883/bzycj-2020-0180.

    WANG W, YANG J C, WANG J H, et al. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab [J]. Explosion And Shock Waves, 2020, 40(12): 121402. DOI: 10.11883/bzycj-2020-0180.
    [18] WANG W, HUO Q, YANG J, et al. Damage analysis of POZD coated square reinforced concrete slab under contact blast [J]. Defence Technology, 2022, 18(9): 1715–1726. DOI: 10.1016/j.dt.2021.07.005.
    [19] 杨建超, 汪剑辉, 陈力, 等. POZD涂层钢筋混凝土板抗震塌性能 [J]. 兵工学报, 2021, 42(1): 133–140. DOI: 10.3969/j.issn.1000-1093.2021.01.015.

    YANG J C, WANG J H, CHEN L, et al. Anti-collapsing performance of POZD coated reinforced concrete slab [J]. Acta Armamentarii, 2021, 42(1): 133–140. DOI: 10.3969/j.issn.1000-1093.2021.01.015.
    [20] 杨建超, 汪剑辉, 王幸, 等. 聚异氰氨酸脂噁唑烷弹性涂层钢筋混凝土板抗震塌机理 [J]. 科学技术与工程, 2022, 22(4): 1338–1343. DOI: 10.3969/j.issn.1671-1815.2022.04.005.

    YANG J C, WANG J H, WANG X, et al. Anti-collapsing mechanism of reinforced concrete slab with polyisocyanate-oxazodone elastic coating [J]. Science Technology and Engineering, 2022, 22(4): 1338–1343. DOI: 10.3969/j.issn.1671-1815.2022.04.005.
    [21] 徐赵威, 汪维, 李奕硕, 等. 接触爆炸下聚脲/钢筋混凝土厚板复合结构的抗爆性能 [J]. 爆炸与冲击. DOI: 10.11883/bzycj-2024-0083.

    XU Z W, WANG W, LI Y S, et al. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion [J]. Explosion And Shock Waves. DOI: 10.11883/bzycj-2024-0083.
    [22] 胡玉峰, 宋殿义, 谭清华, 等. 接触爆炸作用下RC单向板抗爆加固的试验研究 [J]. 防护工程, 2019, 41(5): 1–7.

    HU Y F, SONG D Y, TAN Q H. Experimental investigation on anti-explosion strengthening of one-way RC slabs under contact explosion [J]. Protective Engineering, 2019, 41(5): 1–7.
    [23] MCVAY M K. Spall damage of concrete structures [R]. Technical report SL-88-22. Structures Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi, 1988.
    [24] TU H, FUNG T C, TAN K H, et al. An analytical model to predict spalling and breaching of concrete plates under contact detonation [J]. International Journal of Impact Engineering., 2022, 160: 104075. DOI: 10.1016/j.ijimpeng.2021.104075.
    [25] GEBBEKEN N, KRAUTHAMMER T, HUPFAUF M. Understanding the dynamic response of concrete to loading: Practical examples [M] // Understanding the tensile properties of concrete. Woodhead Publishing, 2024: 379-418. DOI: 10.1016/B978-0-443-15593-2.00008-7.
    [26] HUPFAUF M, GEBBEKEN N. Secondary debris resulting from concrete slabs subjected to contact detonations–Spatial velocity distribution and influence of steel fibers [J]. International Journal of Protective Structures, 2024, 0(0): 1–22. DOI: 10.1177/20414196241264026.
    [27] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.

    YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion And Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
    [28] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.

    GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion And Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
    [29] 孙玉祥, 王杰, 武海军, 等. 混凝土高压状态方程实验与数值模拟研究 [J]. 爆炸与冲击, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.

    SUN Y X, WANG J, WU H J, et al. Experiment and simulation on high-pressure equation of state for concrete [J]. Explosion And Shock Waves, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.
    [30] HARTMANN T, PIETASCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1(4): 443–468. DOI: 10.1260/2041-4196.1.4.443.
    [31] RIEDEL W, MAYRHOFER C, THOMA K, et al. Engineering and numerical tools for explosion protection of reinforced concrete [J]. International Journal of Protective Structures, 2010, 1(1): 85–102. DOI: 10.1260/2041-4196.1.1.85.
    [32] KOT C A, VALENTIN R A, MCLENNAN D A, et al. Effects of air blast on power plant structures and components [R]. Argonne National Lab. (ANL), Argonne, IL (United States), 1978. DOI: 10.2172/6611172.
    [33] RIEDEL W, FORQUIN P. Modelling the response of concrete structures to dynamic loading [M]//Understanding the Tensile Properties of Concrete. Woodhead Publishing, 2013: 125–142e. DOI: 10.1533/9780857097538.2.125.
    [34] HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis [C]//Proceedings of the 7th international conference on shock and impact loads on structures, Beijing, China. 2007: 753–768.
    [35] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [36] MOCK J W, BARTYCZAK S, LEE G, et al. Dynamic properties of polyurea 1000 [C]//AIP Conference Proceedings. American Institute of Physics, 2009, 1195(1): 1241–1244. DOI: 10.1063/1.3295029.
    [37] JORDAN J L, CASEM D T, ROBINETTE J. Hugoniot and dynamic strength in polyurea [J]. Journal of Applied Physics, 2022, 131(16). DOI: 10.1063/5.0082477.
    [38] CARTER W J, MARSH S P. Hugoniot equation of state of polymers [R]. Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1995. DOI: 10.2172/95183.
    [39] 郑全平, 钱七虎, 周早生, 等. 钢筋混凝土震塌厚度计算公式对比研究 [J]. 工程力学, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.

    ZHENG Q P, QIAN Q H, ZHOU Z S, et al. Comparative analysis of scabbing thickness estimation of reinforced concrete structures [J]. Engineering Mechanics, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.
    [40] GEBBEKEN N, GREULICH S, PIETZSCH A, et al. The engineering-tool XploSim to determine the effects of explosive loadings on reinforced and fibre reinforced concrete structures [C]//Proc. of 18th Int. Symp. Military Aspects of Blast and Shock. 2004.
    [41] MORISHITA M, TANAKA H, ANDO T, et al. Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations [J]. Concrete Research and Technology, 2004, 15(2): 89–98. DOI: 10.3151/crt1990.15.2_89.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  16
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-19
  • 修回日期:  2025-04-16
  • 网络出版日期:  2025-04-17

目录

    /

    返回文章
    返回