• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

动态海缆抗多次冲击复合防护层设计及力学性能研究

孙勇 蒋招绣 王永刚

孙勇, 蒋招绣, 王永刚. 动态海缆抗多次冲击复合防护层设计及力学性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0058
引用本文: 孙勇, 蒋招绣, 王永刚. 动态海缆抗多次冲击复合防护层设计及力学性能研究[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0058
SUN Yong, JIANG Zhaoxiu, WANG Yonggang. Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0058
Citation: SUN Yong, JIANG Zhaoxiu, WANG Yonggang. Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0058

动态海缆抗多次冲击复合防护层设计及力学性能研究

doi: 10.11883/bzycj-2025-0058
基金项目: 宁波市重大科技任务攻关项目(2022Z188);
详细信息
    作者简介:

    孙 勇(1999- ),男,硕士研究生,sunyong2022@126.com

    通讯作者:

    王永刚(1976- ),男,教授,博士生导师,wangyonggang@nbu.edu.cn

  • 中图分类号: O383; TB21

Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable

  • 摘要: 针对恶劣海况下动态海缆及其保护套与风机平台摩擦和碰撞导致的断裂问题,以具有高弹性、高缓冲性能的EVA泡沫和橡胶为主体材料,设计了一种抗多次冲击复合防护层。采用万能试验机和落锤,开展了不同加载条件下多种相对密度的EVA泡沫材料的力学性能实验,揭示了相对密度、应变率和多次加载对材料能量吸收特性的影响规律。基于EVA泡沫材料单位体积吸能率与待吸收的动态海缆动能之间的匹配关系,讨论并确定最佳的防护层厚度尺寸,进而制作了复合防护层测试样件。随后,通过落锤冲击实验对复合防护层在单次冲击和多次冲击条件下的缓冲吸能特性进行了研究。实验结果表明:在单次冲击下复合防护层的峰值力与最大位移随落锤质量与下落速度呈线性正相关变化,且能量吸收效率高达85 %;在多次冲击下复合防护层的力学性能呈现显著稳定性,第四次冲击的最大位移较首次冲击仅增大了5.5 %,且能量吸收值和瞬时回弹率的波动幅度小于5 %。复合防护层的独特力学性能可为动态海缆在恶劣海况下的长期使用提供有效保护。
  • 图  1  海上浮式风机结构图与动态海缆结构剖面图

    Figure  1.  Structural image of offshore floating wind turbine and cross-sectional view of dynamic submarine cable

    图  2  动态海缆损伤断裂的工程现场照片

    Figure  2.  Photos of damaged dynamic submarine cables

    图  3  试样尺寸及其SEM图像

    Figure  3.  Specimen size and SEM images

    图  4  落锤试验机

    Figure  4.  Drop-weight testing machine

    图  5  不同密度EVA应力-应变曲线

    Figure  5.  Stress-strain curves of EVA with different densities

    图  6  EVA泡沫材料理论与实验的应力-应变曲线

    Figure  6.  Stress-strain curve of EVA foam material in theory and experiment

    图  7  不同密度EVA泡沫的能量吸收效率

    Figure  7.  Energy absorption efficiency of EVA foam at different densities

    图  8  不同密度下EVA密实化应变、平台应力、最大比吸能

    Figure  8.  Densification strain, plateau stress and maximum specific energy absorption of EVA at different densities

    图  9  不同应变率下EVA应力-应变曲线

    Figure  9.  Stress-strain curves of EVA under different strain rates

    图  10  不同应变率下EVA密实化应变、平台应力、最大比吸能

    Figure  10.  Densification strain, plateau stress and maximum specific energy absorption of EVA under different strain rates

    图  11  连续加载下EVA应力-应变曲线

    Figure  11.  The stress-strain curve of EVA under continuous loading

    图  12  连续加载下EVA吸收能量

    Figure  12.  The energy absorption of EVA under continuous loadings

    图  13  非连续加载下EVA应力-应变曲线

    Figure  13.  The stress-strain curve of EVA under discontinuous loading

    图  14  非连续加载下EVA吸收能量

    Figure  14.  The energy absorption of EVA under continuous loadings

    图  15  加载前后EVA细观结构

    Figure  15.  Mesostructure of EVA before and after loading

    图  16  EVA单胞破坏阶段

    Figure  16.  EVA unit cell destruction stage

    图  17  动态海缆受到的载荷

    Figure  17.  The load of dynamic submarine cable

    图  18  防护层的制作流程简图

    Figure  18.  The production process of protective layer

    图  19  动态海缆线型分布

    Figure  19.  Dynamic submarine cable line distribution

    图  20  动态海缆的速度曲线

    Figure  20.  Velocity curve of dynamic submarine cable

    图  21  防护层测试尺寸

    Figure  21.  Experimental size of protective layer

    图  22  防护层冲击分区

    Figure  22.  Impact partition of protective layer

    图  23  防护层支撑端约束情况

    Figure  23.  The constraint condition of the support end of the protective layer

    图  24  不同材料与防护层的缓冲性能对比图

    Figure  24.  Comparison of cushioning properties of different materials and protective layers

    图  25  不同落锤质量和下落速度下复合防护层的动态力学行为

    Figure  25.  Dynamic mechanical behavior of protective layer under different drop hammer mass and drop speed

    图  26  不同落锤质量和速度下防护层峰值力变化

    Figure  26.  The change of peak force of protective layer under different drop hammer mass and speed

    图  27  不同落锤质量和速度下防护层最大位移变化

    Figure  27.  The maximum displacement of protective layer under different drop hammer mass and speed

    图  28  不同加载下防护层吸收能量

    Figure  28.  Energy absorption of protective layer under different loads

    图  29  不同加载下防护层吸能效率

    Figure  29.  Energy absorption efficiency of protective layer under different loads

    图  30  多次加载下防护层力-位移曲线

    Figure  30.  Force-displacement curve of protective layer under multiple loadings

    图  33  多次加载下防护层瞬时回弹率

    Figure  33.  Instantaneous rebound rate of protective layer under multiple loadings

    图  31  多次加载下防护层峰值力与最大位移曲线

    Figure  31.  The peak force and maximum displacement of the protective layer under multiple loadings

    图  32  多次加载下防护层吸收能量

    Figure  32.  Energy absorption of protective layer under multiple loadings

    表  1  动态海缆各部位的基本参数

    Table  1.   Basic parameters of each part of dynamic submarine cable

    参数 净重/kg 长度/m
    动态海缆(空气中) 373 12.3
    动态海缆(水中) 2603 161.7
    防撞环 1200 14.4
    浮力块1 1200 14
    浮力块2 1050 12
    重力块 414 6
    下载: 导出CSV
  • [1] 林开泉, 王红霞, 刘红亮, 等. 海底光缆锚害的有限元分析 [J]. 电线电缆, 2010(06): 31–33+44. DOI: 10.16105/j.cnki.dxdl.2010.06.015.

    LIN K Q, WANG H X, LIU H L, et al. Finite element analysis of anchorage damage of submarine optical cable [J]. Electic Wire & Cable, 2010(06): 31–33+44. DOI: 10.16105/j.cnki.dxdl.2010.06.015.
    [2] 夏峰, 陈凯, 张永明. 海底电力电缆铠装结构机械强度分析及设计 [J]. 电线电缆, 2011(03): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004.

    XIA F, CHEN K, ZHANG Y M. Mechanical strength analysis and design of submarine power cable armored structure [J]. Electic Wire & Cable, 2011(03): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004.
    [3] 钟科星, 丁乐声, 张聪, 等. 基于神经网络的风电海缆弯曲限制器优化设计 [J]. 海洋工程装备与技术, 2024, 11(01): 70–76. DOI: 10.12087/oeet.2095-7297.2024.01.12.

    ZHONG K X, DING L S, ZHANG C, et al. Optimization design of wind power submarine cable bending limiter based on neural network [J]. Ocean Engineering Equipment and Technology, 2024, 11(01): 70–76. DOI: 10.12087/oeet.2095-7297.2024.01.12.
    [4] 林峰, 李斯魏, 薛驰, 等. 海上风电海缆风机端弯曲保护装置及安装技术研究 [J]. 机电工程技术, 2024, 53(09): 12–16+46. DOI: 10.3969/j.issn.1009-9492.2024.09.003.

    LIN F, LI S W, XUE C, et al. Research on bending protection device and installation technology of offshore wind power submarine cable fan end [J]. Mechanical & Electrical Engineering Technology, 2024, 53(09): 12–16+46. DOI: 10.3969/j.issn.1009-9492.2024.09.003.
    [5] 董吴磊, 杨华勇, 郭朝阳, 等. 基于材料非线性的两种海缆弯曲限制器的有限元分析与试验验证 [J]. 海洋技术学报, 2019, 38(06): 89–94. DOI: CNKI:SUN:HYJS.0.2019-06-014.

    DONG W L, YANG H Y, GUO C Y, et al. Finite element analysis and experimental verification of two kinds of submarine cable bending limiters based on material nonlinearity [J]. Ocean Technology, 2019, 38(06): 89–94. DOI: CNKI:SUN:HYJS.0.2019-06-014.
    [6] 邓俊儒, 张青云. 基于多种桩型的海缆保护系统研究 [J]. 南方能源建设, 2020, 7(02): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014.

    DENG J R, ZHANG Q Y. Research on submarine cable protection system based on multiple pile types [J]. Southern Energy Construction, 2020, 7(02): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014.
    [7] 周忠旭. 固定式风电平台下的悬挂海缆保护设计与分析[D]. 大连: 大连理工大学, 2020: 23–25.

    ZHOU Z X. Design and analysis of suspended submarine cable protection under fixed wind power platform[D]. Dalian : Dalian University of Technology, 2020: 23–25.
    [8] RUMIANEK P, DOBOSZ T, NOWAK R, et al. Static mechanical properties of expanded polypropylene crushable foam [J]. Materials, 2021, 14(2): 249–264. DOI: 10.3390/ma14020249.
    [9] CHEN H, SUN D, GAO L, et al. Mechanical behavior of closed-cell ethylene-vinyl acetate foam under compression [J]. Polymers, 2024, 16(1): 34. DOI: 10.3390/polym16010034.
    [10] LIU D S, CHEN Z H, TSAI C Y, et al. Compressive mechanical property analysis of EVA foam: Its buffering effects at different impact velocities [J]. Journal of Mechanics, 2017, 33(4): 435–441. DOI: 10.1017/jmech.2016.98.
    [11] LAM C, KWAN J S H, Su Y, et al. Performance of ethylene-vinyl acetate foam as cushioning material for rigid debris-resisting barriers [J]. Landslides, 2018, 15: 1779–1786. DOI: 10.1007/s10346-018-0987-z.
    [12] AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI: 10.1016/S0734-743X(00)00060-9.
    [13] 孙德强, 高璐璐, 刘晓晨, 等. 闭孔EVA泡沫类静态缓冲性能的研究 [J]. 包装工程, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.

    SUN D Q, Gao L L, LIU X C, et al. Study on static cushioning properties of closed-cell EVA foam [J]. Packaging Engineering, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.
    [14] LINUL E, ŞERBAN D A, MARSAVINA L, et al. Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 457–466. DOI: 10.1016/j.acme.2016.12.009.
    [15] ELLIOTT J A, WINDLE A H, HOBDELL J R, et al. In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography [J]. Journal of Materials Science, 2002, 37(8): 1547–1555. DOI: 10.1023/A:1014920902712.
    [16] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
    [17] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519.
    [18] SHIVAKUMAR N D, DEB A. Dependence of the mechanical properties of rigid PU foam on density [J]. Journal of Reinforced Plastics and Composites, 2022, 41(9−10): 355–363. DOI: 10.1177/07316844211051737.
    [19] 苏兴亚, 周伦, 敬霖, 等. 软质聚氨酯泡沫的动态压缩力学性能和本构模型 [J]. 爆炸与冲击, 2022, 42(09): 155–165. DOI: 10.11883/bzycj-2022-0201.

    SU X Y, ZHOU L, JIN L, et al. Dynamic compressive mechanical properties and constitutive model of soft polyurethane foam [J]. Explosion and Shock Waves, 2022, 42(09): 155–165. DOI: 10.11883/bzycj-2022-0201.
    [20] DEL ROSSO S, IANNUCCI L. On the compressive response of polymeric cellular materials [J]. Materials, 2020, 13(2): 457. DOI: 10.3390/ma13020457.
    [21] 张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.

    ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum [J]. Explosion and Shock Waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.
    [22] 吴江, 王根伟, 李志强. 应变率与相对密度对聚氨酯泡沫压缩力学行为的影响 [J]. 科学技术与工程, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.

    WU J, WANG G W, LI Z Q. Effect of strain rate and relative density on compressive mechanical behavior of polyurethane foams [J]. Science Technology and Engineering, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.
    [23] 胡时胜, 王悟, 潘艺, 等. 泡沫材料的应变率效应 [J]. 爆炸与冲击, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-0013-6.

    HU S S, WANG W, PAN Y, et al. Strain rate effect of foam materials [J]. Explosion and Shock Waves, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-0013-6.
    [24] 范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟 [J]. 爆炸与冲击, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.

    FAN Z G, CHEN C Q, WAN Q. Finite element simulation on the rate-dependent properties of aluminum foams [J]. Explosion and Shock Waves, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.
    [25] BOON P C, ANATOLI K, ALEKSANDR K, et al. Enhancing dynamic impact performance and cushioning of EVA copolymer foams with thermoplastic elastomers [J]. Materials Today Communications, 2024, 38: 107888. DOI: 10.1016/j.mtcomm.2023.107888.
    [26] ZHU P, MEUCHELBÖCK J, QIU C, et al. Fatigue behaviors and cellular damages of bead-welded foam of poly(ether-b-amide) under cyclic compression [J]. International Journal of Fatigue, 2025, 194: 108841. DOI: 10.1016/j.ijfatigue.2025.108841.
    [27] 杨宝. SHPB实验中泡沫铝细观结构变形特征与应变率效应机理研究[D]. 广州: 华南理工大学, 2012: 82–85.

    YANG B. Study on deformation characteristics and strain rate effect mechanism of meso-structure of aluminum foam in SHPB experiment[D]. Guangzhou : South China University of Technology, 2012: 82–85.
    [28] BASTAWROS A F, EVANS A G. Deformation heterogeneity in cellular Al alloys [J]. Advanced Engineering Materials, 2000, 2(4): 210–214. DOI: 10.1002/(SICI)1527-2648(200004)2:4<210::AID-ADEM210>3.0.CO;2-Z.
  • 加载中
图(33) / 表(1)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  15
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-24
  • 修回日期:  2025-04-11
  • 网络出版日期:  2025-04-16

目录

    /

    返回文章
    返回