Design and mechanical behavior of anti-shock composite protective layer for offshore wind power dynamic cable
-
摘要: 针对恶劣海况下动态海缆及其保护套与风机平台摩擦和碰撞导致的断裂问题,以具有高弹性、高缓冲性能的EVA泡沫和橡胶为主体材料,设计了一种抗多次冲击复合防护层。采用万能试验机和落锤,开展了不同加载条件下多种相对密度的EVA泡沫材料的力学性能实验,揭示了相对密度、应变率和多次加载对材料能量吸收特性的影响规律。基于EVA泡沫材料单位体积吸能率与待吸收的动态海缆动能之间的匹配关系,讨论并确定最佳的防护层厚度尺寸,进而制作了复合防护层测试样件。随后,通过落锤冲击实验对复合防护层在单次冲击和多次冲击条件下的缓冲吸能特性进行了研究。实验结果表明:在单次冲击下复合防护层的峰值力与最大位移随落锤质量与下落速度呈线性正相关变化,且能量吸收效率高达85 %;在多次冲击下复合防护层的力学性能呈现显著稳定性,第四次冲击的最大位移较首次冲击仅增大了5.5 %,且能量吸收值和瞬时回弹率的波动幅度小于5 %。复合防护层的独特力学性能可为动态海缆在恶劣海况下的长期使用提供有效保护。Abstract: To address the fracture problem of dynamic submarine cables and their protective sheaths caused by friction and collision with wind turbine platforms under harsh sea conditions, a multi-impact resistant composite protective layer was designed using EVA foam and rubber as the main materials, which possess high elasticity and excellent cushioning properties.Mechanical property tests were conducted on EVA foam materials with various relative densities under different loading conditions using a universal testing machine and drop hammer. Energy absorption efficiency, densification strain, plateau stress and maximum specific energy absorption were introduced to characterize the mechanical properties of EVA foam. The effects of relative density, strain rate and repeated loading on the energy absorption characteristics of EVA foam were revealed.Based on the matching relationship between the energy absorption per unit volume of EVA foam and the kinetic energy of dynamic submarine cables to be absorbed, the optimal thickness of the protective layer was determined, and composite protective layer specimens were fabricated. Subsequently, drop hammer impact tests were performed to compare the cushioning and energy absorption characteristics of the composite protective layer with other materials, preliminarily verifying its high energy absorption efficiency. Further drop hammer impact tests were conducted to investigate the effects of impact energy and loading cycles on the cushioning and energy absorption characteristics of the composite protective layer. The experimental results showed that: 1) Under single impact, the peak force and maximum displacement of the composite protective layer showed a linear positive correlation with the drop hammer mass and impact velocity, with energy absorption efficiency reaching 85 %; 2) Under multiple impacts, the mechanical properties of the composite protective layer exhibited remarkable stability - the maximum displacement in the fourth impact increased by only 5.5 % compared to the first impact, with fluctuations in energy absorption value and instantaneous rebound rate remaining below 5 %. The composite protective layer demonstrates unique mechanical properties that provide effective long-term protection for dynamic submarine cables under harsh marine conditions.
-
Key words:
- EVA foam /
- quasi-static compression /
- dynamic compression /
- energy absorption /
- cable protection
-
表 1 动态海缆各部位的基本参数
Table 1. Basic parameters of each part of dynamic submarine cable
参数 净重/kg 长度/m 动态海缆(空气中) 373 12.3 动态海缆(水中) 2603 161.7 防撞环 − 1200 14.4 浮力块1 − 1200 14 浮力块2 − 1050 12 重力块 414 6 -
[1] 林开泉, 王红霞, 刘红亮, 等. 海底光缆锚害的有限元分析 [J]. 电线电缆, 2010(06): 31–33+44. DOI: 10.16105/j.cnki.dxdl.2010.06.015.LIN K Q, WANG H X, LIU H L, et al. Finite element analysis of anchorage damage of submarine optical cable [J]. Electic Wire & Cable, 2010(06): 31–33+44. DOI: 10.16105/j.cnki.dxdl.2010.06.015. [2] 夏峰, 陈凯, 张永明. 海底电力电缆铠装结构机械强度分析及设计 [J]. 电线电缆, 2011(03): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004.XIA F, CHEN K, ZHANG Y M. Mechanical strength analysis and design of submarine power cable armored structure [J]. Electic Wire & Cable, 2011(03): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004. [3] 钟科星, 丁乐声, 张聪, 等. 基于神经网络的风电海缆弯曲限制器优化设计 [J]. 海洋工程装备与技术, 2024, 11(01): 70–76. DOI: 10.12087/oeet.2095-7297.2024.01.12.ZHONG K X, DING L S, ZHANG C, et al. Optimization design of wind power submarine cable bending limiter based on neural network [J]. Ocean Engineering Equipment and Technology, 2024, 11(01): 70–76. DOI: 10.12087/oeet.2095-7297.2024.01.12. [4] 林峰, 李斯魏, 薛驰, 等. 海上风电海缆风机端弯曲保护装置及安装技术研究 [J]. 机电工程技术, 2024, 53(09): 12–16+46. DOI: 10.3969/j.issn.1009-9492.2024.09.003.LIN F, LI S W, XUE C, et al. Research on bending protection device and installation technology of offshore wind power submarine cable fan end [J]. Mechanical & Electrical Engineering Technology, 2024, 53(09): 12–16+46. DOI: 10.3969/j.issn.1009-9492.2024.09.003. [5] 董吴磊, 杨华勇, 郭朝阳, 等. 基于材料非线性的两种海缆弯曲限制器的有限元分析与试验验证 [J]. 海洋技术学报, 2019, 38(06): 89–94. DOI: CNKI:SUN:HYJS.0.2019-06-014.DONG W L, YANG H Y, GUO C Y, et al. Finite element analysis and experimental verification of two kinds of submarine cable bending limiters based on material nonlinearity [J]. Ocean Technology, 2019, 38(06): 89–94. DOI: CNKI:SUN:HYJS.0.2019-06-014. [6] 邓俊儒, 张青云. 基于多种桩型的海缆保护系统研究 [J]. 南方能源建设, 2020, 7(02): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014.DENG J R, ZHANG Q Y. Research on submarine cable protection system based on multiple pile types [J]. Southern Energy Construction, 2020, 7(02): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014. [7] 周忠旭. 固定式风电平台下的悬挂海缆保护设计与分析[D]. 大连: 大连理工大学, 2020: 23–25.ZHOU Z X. Design and analysis of suspended submarine cable protection under fixed wind power platform[D]. Dalian : Dalian University of Technology, 2020: 23–25. [8] RUMIANEK P, DOBOSZ T, NOWAK R, et al. Static mechanical properties of expanded polypropylene crushable foam [J]. Materials, 2021, 14(2): 249–264. DOI: 10.3390/ma14020249. [9] CHEN H, SUN D, GAO L, et al. Mechanical behavior of closed-cell ethylene-vinyl acetate foam under compression [J]. Polymers, 2024, 16(1): 34. DOI: 10.3390/polym16010034. [10] LIU D S, CHEN Z H, TSAI C Y, et al. Compressive mechanical property analysis of EVA foam: Its buffering effects at different impact velocities [J]. Journal of Mechanics, 2017, 33(4): 435–441. DOI: 10.1017/jmech.2016.98. [11] LAM C, KWAN J S H, Su Y, et al. Performance of ethylene-vinyl acetate foam as cushioning material for rigid debris-resisting barriers [J]. Landslides, 2018, 15: 1779–1786. DOI: 10.1007/s10346-018-0987-z. [12] AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI: 10.1016/S0734-743X(00)00060-9. [13] 孙德强, 高璐璐, 刘晓晨, 等. 闭孔EVA泡沫类静态缓冲性能的研究 [J]. 包装工程, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.SUN D Q, Gao L L, LIU X C, et al. Study on static cushioning properties of closed-cell EVA foam [J]. Packaging Engineering, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008. [14] LINUL E, ŞERBAN D A, MARSAVINA L, et al. Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 457–466. DOI: 10.1016/j.acme.2016.12.009. [15] ELLIOTT J A, WINDLE A H, HOBDELL J R, et al. In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography [J]. Journal of Materials Science, 2002, 37(8): 1547–1555. DOI: 10.1023/A:1014920902712. [16] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092. [17] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519. [18] SHIVAKUMAR N D, DEB A. Dependence of the mechanical properties of rigid PU foam on density [J]. Journal of Reinforced Plastics and Composites, 2022, 41(9−10): 355–363. DOI: 10.1177/07316844211051737. [19] 苏兴亚, 周伦, 敬霖, 等. 软质聚氨酯泡沫的动态压缩力学性能和本构模型 [J]. 爆炸与冲击, 2022, 42(09): 155–165. DOI: 10.11883/bzycj-2022-0201.SU X Y, ZHOU L, JIN L, et al. Dynamic compressive mechanical properties and constitutive model of soft polyurethane foam [J]. Explosion and Shock Waves, 2022, 42(09): 155–165. DOI: 10.11883/bzycj-2022-0201. [20] DEL ROSSO S, IANNUCCI L. On the compressive response of polymeric cellular materials [J]. Materials, 2020, 13(2): 457. DOI: 10.3390/ma13020457. [21] 张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06.ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum [J]. Explosion and Shock Waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-0373-06. [22] 吴江, 王根伟, 李志强. 应变率与相对密度对聚氨酯泡沫压缩力学行为的影响 [J]. 科学技术与工程, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.WU J, WANG G W, LI Z Q. Effect of strain rate and relative density on compressive mechanical behavior of polyurethane foams [J]. Science Technology and Engineering, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019. [23] 胡时胜, 王悟, 潘艺, 等. 泡沫材料的应变率效应 [J]. 爆炸与冲击, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-0013-6.HU S S, WANG W, PAN Y, et al. Strain rate effect of foam materials [J]. Explosion and Shock Waves, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-0013-6. [24] 范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟 [J]. 爆炸与冲击, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.FAN Z G, CHEN C Q, WAN Q. Finite element simulation on the rate-dependent properties of aluminum foams [J]. Explosion and Shock Waves, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06. [25] BOON P C, ANATOLI K, ALEKSANDR K, et al. Enhancing dynamic impact performance and cushioning of EVA copolymer foams with thermoplastic elastomers [J]. Materials Today Communications, 2024, 38: 107888. DOI: 10.1016/j.mtcomm.2023.107888. [26] ZHU P, MEUCHELBÖCK J, QIU C, et al. Fatigue behaviors and cellular damages of bead-welded foam of poly(ether-b-amide) under cyclic compression [J]. International Journal of Fatigue, 2025, 194: 108841. DOI: 10.1016/j.ijfatigue.2025.108841. [27] 杨宝. SHPB实验中泡沫铝细观结构变形特征与应变率效应机理研究[D]. 广州: 华南理工大学, 2012: 82–85.YANG B. Study on deformation characteristics and strain rate effect mechanism of meso-structure of aluminum foam in SHPB experiment[D]. Guangzhou : South China University of Technology, 2012: 82–85. [28] BASTAWROS A F, EVANS A G. Deformation heterogeneity in cellular Al alloys [J]. Advanced Engineering Materials, 2000, 2(4): 210–214. DOI: 10.1002/(SICI)1527-2648(200004)2:4<210::AID-ADEM210>3.0.CO;2-Z. -