Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials
-
摘要: 点阵力学超材料具有轻质、可设计和抗冲击等优点,在航空航天等许多领域具有广阔的应用前景。设计了一种米字形点阵力学超材料,采用选择性激光熔化技术制备了米字形点阵力学超材料试样,开展了落锤冲击试验和有限元数值模拟,研究了低速冲击载荷作用下点阵力学超材料的动态压溃行为和能量吸收机理,分析了冲击速度对米字形点阵力学超材料变形模式和能量吸收特性的影响规律。研究结果表明:冲击速度对米字形点阵力学超材料的变形模式有较大影响,在较低冲击速度下,点阵力学超材料的变形模式与准静态压缩下的变形模式相似,均以剪切带周围胞元的逐层压溃模式为主;在较高冲击速度下,点阵力学超材料的变形模式由X形剪切带转换为V形剪切带,最后演变为弧形剪切带;进一步研究发现,米字形点阵力学超材料呈现出一定程度的速率敏感性,随着冲击速度的增大,初始峰值应力、平台应力和比吸能增大。Abstract: Lattice mechanical metamaterials have been widely used in various fields due to the lightweight, flexible designability and excellent impact resistance. In this paper, an enhanced X-shaped lattice mechanical metamaterial was designed and fabricated by selective laser melting. The dynamic crushing behavior and energy absorption mechanism of this metamaterials subjected to low-velocity impact were explored experimentally and numerically. The influence of impact velocity on the deformation mode and energy absorption capability of the enhanced X-shaped lattice mechanical metamaterials was analyzed. It is shown that the impact velocity has significant effects on the deformation modes of the mechanical metamaterials. At the lower impact velocities, the deformation mode of lattice mechanical metamaterials resembles that observed under quasi-static compression, characterized by the layer-by-layer crushing mode of the cells around the shear band. At the higher impact velocities, the deformation mode of lattice mechanical metamaterials transitions from X-shaped shear band to V-shaped shear band, and finally evolves into an arc-shaped shear band. The further study suggests that enhanced X-shaped lattice mechanical metamaterial exhibits a certain degree of velocity sensitivity. With the increase of the impact velocity, the initial peak stress, plateau stress, and specific energy absorption all increase correspondingly.
-
Key words:
- mechanical metamaterial /
- low-velocity impact /
- dynamic response /
- deformation mode /
- energy absorption
-
图 2 拉伸试件的名义应力-应变曲线[21]
Figure 2. Nominal stress-strain curves of tensile specimens
表 1 动态冲击试验设计方案
Table 1. Design scheme of dynamic impact experiment
试验编号 目标高度/m 冲击速度/ (m·s−1) 1 2.5 7.00 2 3.0 7.67 3 3.5 8.28 表 2 低速冲击下米字形点阵力学超材料的评估指标
Table 2. Evaluation indexes of enhanced X-shaped lattice mechanical metamaterials subjected to low-velocity impact
v/(m·s−1) σpeak/MPa σpl/MPa Em/(kJ·kg−1) 7 3.13 1.22 5.76 7.67 3.27 1.22 5.73 8.28 3.66 1.22 5.82 15 6.59 1.31 6.26 25 9.11 1.39 6.67 50 12.30 1.90 9.21 -
[1] LI S, HOU Y L, HUANG J, et al. Exploring the enhanced energy-absorption performance of hybrid polyurethane(PU)-foam-filled lattice metamaterials [J]. International Journal of Impact Engineering, 2024, 193: 105058. DOI: 10.1016/j.ijimpeng.2024.105058. [2] MENG L, ZHONG M Z, GAO Y S, et al. Impact resisting mechanism of tension-torsion coupling metamaterials [J]. International Journal of Mechanical Sciences, 2024, 272: 109100. DOI: 10.1016/j.ijmecsci.2024.109100. [3] WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. DOI: 10.1016/j.compositesb.2020.108379. [4] WANG Y J, ZHANG X, LI Z H, et al. Achieving the theoretical limit of strength in shell-based carbon nanolattices [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2119536119. DOI: 10.1073/pnas.2119536119. [5] 肖李军, 李实, 冯根柱, 等. 增材制造三维微点阵材料力学性能表征与细观优化设计研究进展 [J]. 固体力学学报, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.XIAO L J, LI S, FENG G Z, et al. Research progress in mechanical characterization and mesoscopic optimal design of additively-manufactured 3D microlattice materials [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041. [6] WANG P, YANG F, RU D H, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application [J]. Materials & Design, 2021, 210: 110116. DOI: 10.1016/j.matdes.2021.110116. [7] WANG P, YANG F, ZHENG B L, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials [J]. Advanced Functional Materials, 2023, 33(45): 2305978. DOI: 10.1002/adfm.202305978. [8] TANCOGNE-DEJEAN T, MOHR D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams [J]. International Journal of Mechanical Sciences, 2018, 141: 101–116. DOI: 10.1016/j.ijmecsci.2018.03.027. [9] LING C, CERNICCHI A, GILCHRIST M D, et al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading [J]. Materials & Design, 2019, 162: 106–118. DOI: 10.1016/j.matdes.2018.11.035. [10] NASIM M, GALVANETTO U. Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression [J]. Materials Today Communications, 2021, 29: 102902. DOI: 10.1016/j.mtcomm.2021.102902. [11] HABIB F N, IOVENITTI P, MASOOD S H, et al. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology [J]. Materials & Design, 2018, 155: 86–98. DOI: 10.1016/j.matdes.2018.05.059. [12] WU H, CHEN J Z, DUAN K, et al. Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution [J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42504–42512. DOI: 10.1021/acsami.2c12297. [13] XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. DOI: 3390/ma13184083. DOI: 10.3390/ma13184083. [14] TRAXEL K D, GRODEN C, VALLADARES J, et al. Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V [J]. Materials Science and Engineering: A, 2021, 809: 140925. DOI: 10.1016/j.msea.2021.140925. [15] ZHANG P, QI D X, XUE R, et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials [J]. Composite Structures, 2021, 277: 114606. DOI: 10.1016/j.compstruct.2021.114606. [16] LIU B, ZOU J Q, YIN H B, et al. Compression performance evaluation of a novel origami-lattice metamaterial [J]. International Journal of Mechanical Sciences, 2024, 273: 109220. DOI: 10.1016/j.ijmecsci.2024.109220. [17] 张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07. [18] ZHANG M, ZHAO C, LI G X, et al. Research on the cushioning performance of layered lattice materials with multi-configuration [J]. Materials Today Communications, 2022, 31: 103246. DOI: 10.1016/j.mtcomm.2022.103246. [19] 陈洋, 王肇喜, 翟师慧, 等. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J]. Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124. [20] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430. [21] 胡朝磊. 多层级力学超材料压溃行为及缓冲吸能机理研究 [D]. 西安: 西安交通大学, 2022.HU C L. Crushing Behavior and Mitigation and Energy Absorption Mechanism of Hierarchical Mechanical Metamaterials [D]. Xi’an: Xi’an Jiaotong University, 2022. [22] LI X, XIAO L J, SONG W D. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading [J]. Additive Manufacturing, 2021, 46: 102054. DOI: 10.1016/j.addma.2021.102054. [23] QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674. [24] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955x06063519. [25] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092. [26] ZHANG W, WANG H L, LOU X, et al. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb [J]. Thin-Walled Structures, 2024, 194: 111303. DOI: 10.1016/j.tws.2023.111303. -