• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

米字形点阵力学超材料的低速冲击响应及能量吸收特性

路畅 胡朝磊 焦金泽 王志鹏 伍天星 白春玉 王计真 郭亚周 张宇 李肖成 秦庆华

路畅, 胡朝磊, 焦金泽, 王志鹏, 伍天星, 白春玉, 王计真, 郭亚周, 张宇, 李肖成, 秦庆华. 米字形点阵力学超材料的低速冲击响应及能量吸收特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0101
引用本文: 路畅, 胡朝磊, 焦金泽, 王志鹏, 伍天星, 白春玉, 王计真, 郭亚周, 张宇, 李肖成, 秦庆华. 米字形点阵力学超材料的低速冲击响应及能量吸收特性[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0101
LU Chang, HU Chaolei, JIAO Jinze, WANG Zhipeng, WU Tianxing, BAI Chunyu, WANG Jizhen, GUO Yazhou, ZHANG Yu, LI Xiaocheng, QIN Qinghua. Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0101
Citation: LU Chang, HU Chaolei, JIAO Jinze, WANG Zhipeng, WU Tianxing, BAI Chunyu, WANG Jizhen, GUO Yazhou, ZHANG Yu, LI Xiaocheng, QIN Qinghua. Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0101

米字形点阵力学超材料的低速冲击响应及能量吸收特性

doi: 10.11883/bzycj-2025-0101
基金项目: 国家自然科学基金(12472391,11972281);航空科学基金(201941070001);国家重点研发计划(2022YFB3806104)
详细信息
    作者简介:

    路 畅(2002- ),男,硕士研究生, luchang6626@163.com

    通讯作者:

    秦庆华(1976- ),男,博士,教授,qhqin@mail.xjtu.edu.cn

  • 中图分类号: O347.3

Investigation on low-velocity impact response and energy absorption of enhanced X-shaped lattice mechanical metamaterials

  • 摘要: 点阵力学超材料具有轻质、可设计和抗冲击等优点,在航空航天等许多领域具有广阔的应用前景。设计了一种米字形点阵力学超材料,采用选择性激光熔化技术制备了米字形点阵力学超材料试样,开展了落锤冲击试验和有限元数值模拟,研究了低速冲击载荷作用下点阵力学超材料的动态压溃行为和能量吸收机理,分析了冲击速度对米字形点阵力学超材料变形模式和能量吸收特性的影响规律。研究结果表明:冲击速度对米字形点阵力学超材料的变形模式有较大影响,在较低冲击速度下,点阵力学超材料的变形模式与准静态压缩下的变形模式相似,均以剪切带周围胞元的逐层压溃模式为主;在较高冲击速度下,点阵力学超材料的变形模式由X形剪切带转换为V形剪切带,最后演变为弧形剪切带;进一步研究发现,米字形点阵力学超材料呈现出一定程度的速率敏感性,随着冲击速度的增大,初始峰值应力、平台应力和比吸能增大。
  • 图  1  米字形点阵力学超材料设计与试样

    Figure  1.  Design and specimen of enhanced X-shaped lattice mechanical metamaterial

    图  2  拉伸试件的名义应力-应变曲线[21]

    Figure  2.  Nominal stress-strain curves of tensile specimens

    图  3  米字形点阵力学超材料的面外准静态压缩试验

    Figure  3.  Out-of-plane quasi-static compression experiment of enhanced X-shaped lattice mechanical metamaterial

    图  4  DHR-1250型落锤冲击系统

    Figure  4.  DHR-1250 drop hammer impact system

    图  5  米字形点阵力学超材料的面外准静态压缩有限元模型

    Figure  5.  Finite element model of enhanced X-shaped lattice mechanical metamaterial subjected to out-of-plane quasi-static compression

    图  6  准静态载荷下米字形点阵力学超材料的压缩响应曲线

    Figure  6.  Compression response curves of enhanced X-shaped lattice mechanical metamaterial subjected to quasi-static loading

    图  7  准静态载荷下米字形点阵力学超材料的压缩变形模式

    Figure  7.  Compression deformation modes of enhanced X-shaped lattice mechanical metamaterial subjected to quasi-static loading

    图  8  低速冲击下米字形点阵力学超材料的动态响应曲线(v=7.00 m/s)

    Figure  8.  Dynamic response curves of enhanced X-shaped lattice mechanical metamaterial subjected to low-velocity impact (v=7.00 m/s)

    图  9  低速冲击下米字形点阵力学超材料的变形模式(v=7.00 m/s)

    Figure  9.  Deformation modes of enhanced X-shaped lattice mechanical metamaterial subjected to low-velocity impact (v=7.00 m/s)

    图  10  低速冲击下米字形点阵力学超材料的动态响应曲线(v=7.67 m/s)

    Figure  10.  Dynamic response curves of enhanced X-shaped lattice mechanical metamaterial subjected to low-velocity impact (v=7.67 m/s)

    图  11  低速冲击下米字形点阵力学超材料的变形模式(v=7.67 m/s)

    Figure  11.  Deformation modes of enhanced X-shaped lattice mechanical metamaterial subjected to low-velocity impact (v=7.67 m/s)

    图  12  低速冲击下米字形点阵力学超材料的动态响应曲线(v=8.28 m/s)

    Figure  12.  Dynamic response curves of enhanced X-shaped lattice mechanical metamaterial subjected to low-velocity impact (v=8.28 m/s)

    图  13  低速冲击下米字形点阵力学超材料的变形模式(v=8.28 m/s)

    Figure  13.  Deformation modes of enhanced X-shaped lattice mechanical metamaterial subjected to low-velocity impact (v=8.28 m/s)

    图  14  较低冲击速度下米字形点阵力学超材料的动态响应对比

    Figure  14.  Comparisons of dynamic responses of enhanced X-shaped lattice mechanical metamaterials subjected to lower impact velocities

    图  15  不同冲击速度下米字形点阵力学超材料的变形模式对比

    Figure  15.  Comparisons of deformation modes of enhanced X-shaped lattice mechanical metamaterials subjected to different impact velocities

    图  16  不同冲击速度下米字形点阵力学超材料的应力-应变曲线

    Figure  16.  Stress-strain curves of enhanced X-shaped lattice mechanical metamaterials subjected to different impact velocities

    图  17  准静态压缩载荷下米字形点阵力学超材料的密实应变、平台应力和初始峰值应力

    Figure  17.  Densification strain, plateau stress and initial peak stress of enhanced X-shaped lattice mechanical metamaterials subjected to quasi-static compression loading

    图  18  不同冲击速度下米字形点阵力学超材料的应力-应变曲线

    Figure  18.  Stress-strain curves of enhanced X-shaped lattice mechanical metamaterials subjected to different impact velocities

    图  19  不同冲击速度下米字形点阵力学超材料的比能量吸收曲线对比

    Figure  19.  Comparisons of specific energy absorption curves of enhanced X-shaped lattice mechanical metamaterials subjected to different impact velocities

    表  1  动态冲击试验设计方案

    Table  1.   Design scheme of dynamic impact experiment

    试验编号 目标高度/m 冲击速度/ (m·s−1)
    1 2.5 7.00
    2 3.0 7.67
    3 3.5 8.28
    下载: 导出CSV

    表  2  低速冲击下米字形点阵力学超材料的评估指标

    Table  2.   Evaluation indexes of enhanced X-shaped lattice mechanical metamaterials subjected to low-velocity impact

    v/(m·s−1)σpeak/MPaσpl/MPaEm/(kJ·kg−1)
    73.131.225.76
    7.673.271.225.73
    8.283.661.225.82
    156.591.316.26
    259.111.396.67
    5012.301.909.21
    下载: 导出CSV
  • [1] LI S, HOU Y L, HUANG J, et al. Exploring the enhanced energy-absorption performance of hybrid polyurethane(PU)-foam-filled lattice metamaterials [J]. International Journal of Impact Engineering, 2024, 193: 105058. DOI: 10.1016/j.ijimpeng.2024.105058.
    [2] MENG L, ZHONG M Z, GAO Y S, et al. Impact resisting mechanism of tension-torsion coupling metamaterials [J]. International Journal of Mechanical Sciences, 2024, 272: 109100. DOI: 10.1016/j.ijmecsci.2024.109100.
    [3] WANG Q S, LI Z H, ZHANG Y, et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability [J]. Composites Part B: Engineering, 2020, 202: 108379. DOI: 10.1016/j.compositesb.2020.108379.
    [4] WANG Y J, ZHANG X, LI Z H, et al. Achieving the theoretical limit of strength in shell-based carbon nanolattices [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(34): e2119536119. DOI: 10.1073/pnas.2119536119.
    [5] 肖李军, 李实, 冯根柱, 等. 增材制造三维微点阵材料力学性能表征与细观优化设计研究进展 [J]. 固体力学学报, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.

    XIAO L J, LI S, FENG G Z, et al. Research progress in mechanical characterization and mesoscopic optimal design of additively-manufactured 3D microlattice materials [J]. Chinese Journal of Solid Mechanics, 2023, 44(6): 718–754. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2023.041.
    [6] WANG P, YANG F, RU D H, et al. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application [J]. Materials & Design, 2021, 210: 110116. DOI: 10.1016/j.matdes.2021.110116.
    [7] WANG P, YANG F, ZHENG B L, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials [J]. Advanced Functional Materials, 2023, 33(45): 2305978. DOI: 10.1002/adfm.202305978.
    [8] TANCOGNE-DEJEAN T, MOHR D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams [J]. International Journal of Mechanical Sciences, 2018, 141: 101–116. DOI: 10.1016/j.ijmecsci.2018.03.027.
    [9] LING C, CERNICCHI A, GILCHRIST M D, et al. Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading [J]. Materials & Design, 2019, 162: 106–118. DOI: 10.1016/j.matdes.2018.11.035.
    [10] NASIM M, GALVANETTO U. Mechanical characterisation of additively manufactured PA12 lattice structures under quasi-static compression [J]. Materials Today Communications, 2021, 29: 102902. DOI: 10.1016/j.mtcomm.2021.102902.
    [11] HABIB F N, IOVENITTI P, MASOOD S H, et al. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology [J]. Materials & Design, 2018, 155: 86–98. DOI: 10.1016/j.matdes.2018.05.059.
    [12] WU H, CHEN J Z, DUAN K, et al. Three dimensional printing of bioinspired crossed-lamellar metamaterials with superior toughness for syntactic foam substitution [J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42504–42512. DOI: 10.1021/acsami.2c12297.
    [13] XIAO L J, XU X, SONG W D, et al. A multi-cell hybrid approach to elevate the energy absorption of micro-lattice materials [J]. Materials, 2020, 13(18): 4083. DOI: 3390/ma13184083. DOI: 10.3390/ma13184083.
    [14] TRAXEL K D, GRODEN C, VALLADARES J, et al. Mechanical properties of additively manufactured variable lattice structures of Ti6Al4V [J]. Materials Science and Engineering: A, 2021, 809: 140925. DOI: 10.1016/j.msea.2021.140925.
    [15] ZHANG P, QI D X, XUE R, et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials [J]. Composite Structures, 2021, 277: 114606. DOI: 10.1016/j.compstruct.2021.114606.
    [16] LIU B, ZOU J Q, YIN H B, et al. Compression performance evaluation of a novel origami-lattice metamaterial [J]. International Journal of Mechanical Sciences, 2024, 273: 109220. DOI: 10.1016/j.ijmecsci.2024.109220.
    [17] 张振华, 钱海峰, 王媛欣, 等. 球头落锤冲击下金字塔点阵夹芯板结构的动态响应实验 [J]. 爆炸与冲击, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.

    ZHANG Z H, QIAN H F, WANG Y X, et al. Experiment of dynamic response of multilayered pyramidal lattices during ball hammer collision loading [J]. Explosion and Shock Waves, 2015, 35(6): 888–894. DOI: 10.11883/1001-1455(2015)06-0888-07.
    [18] ZHANG M, ZHAO C, LI G X, et al. Research on the cushioning performance of layered lattice materials with multi-configuration [J]. Materials Today Communications, 2022, 31: 103246. DOI: 10.1016/j.mtcomm.2022.103246.
    [19] 陈洋, 王肇喜, 翟师慧, 等. 3D打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.

    CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J]. Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
    [20] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性 [J]. 爆炸与冲击, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.

    SHI S B, WANG R Z, TANG J B, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings [J]. Explosion and Shock Waves, 2023, 43(6): 062201. DOI: 10.11883/bzycj-2022-0430.
    [21] 胡朝磊. 多层级力学超材料压溃行为及缓冲吸能机理研究 [D]. 西安: 西安交通大学, 2022.

    HU C L. Crushing Behavior and Mitigation and Energy Absorption Mechanism of Hierarchical Mechanical Metamaterials [D]. Xi’an: Xi’an Jiaotong University, 2022.
    [22] LI X, XIAO L J, SONG W D. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading [J]. Additive Manufacturing, 2021, 46: 102054. DOI: 10.1016/j.addma.2021.102054.
    [23] QIN Q H, XIA Y M, LI J F, et al. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: experimental and numerical investigations [J]. International Journal of Impact Engineering, 2020, 145: 103674. DOI: 10.1016/j.ijimpeng.2020.103674.
    [24] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955x06063519.
    [25] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
    [26] ZHANG W, WANG H L, LOU X, et al. On in-plane crushing behavior of a combined re-entrant double-arrow honeycomb [J]. Thin-Walled Structures, 2024, 194: 111303. DOI: 10.1016/j.tws.2023.111303.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  37
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-28
  • 修回日期:  2025-06-10
  • 网络出版日期:  2025-06-12

目录

    /

    返回文章
    返回