• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

射流侵彻混凝土预损伤对弹体侵彻性能的影响

董建才 王冕 刘闯 李辰晖 马路遥 张先锋

董建才, 王冕, 刘闯, 李辰晖, 马路遥, 张先锋. 射流侵彻混凝土预损伤对弹体侵彻性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0108
引用本文: 董建才, 王冕, 刘闯, 李辰晖, 马路遥, 张先锋. 射流侵彻混凝土预损伤对弹体侵彻性能的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0108
DONG Jiancai, WANG Mian, LIU Chuang, LI Chenhui, MA Luyao, ZHANG Xianfeng. Study on the influence of concrete pre-damage on the performance of projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0108
Citation: DONG Jiancai, WANG Mian, LIU Chuang, LI Chenhui, MA Luyao, ZHANG Xianfeng. Study on the influence of concrete pre-damage on the performance of projectile penetration[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0108

射流侵彻混凝土预损伤对弹体侵彻性能的影响

doi: 10.11883/bzycj-2025-0108
基金项目: 国家自然科学基金(12202205,12141202)
详细信息
    作者简介:

    董建才(2001- ),男,硕士,dxx_millet@163.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: TJ41

Study on the influence of concrete pre-damage on the performance of projectile penetration

  • 摘要: 为研究混凝土靶体损伤对弹体侵彻性能的影响效果,基于空腔膨胀理论,完善了弹体侵彻预损伤混凝土半经验模型,采用前级射流、后级动能弹体对混凝土靶进行了连续侵彻试验,获得了影响弹体侵彻预损伤混凝土性能的关键因素,结合预损伤混凝土靶体中混凝土材料强度变化关系,分析了弹靶参数对弹体二次侵彻性能的影响规律。结果表明:靶体预损伤对弹体侵彻深度的增益效果由开坑体积差及混凝土损伤共同影响,且混凝土损伤为主要影响因素;当靶体内存在有限长损伤区,靶体开孔直径是弹体直径的0.3~0.5倍时,靶体损伤对弹体侵彻深度增益最为明显;当靶体内存在贯穿损伤区,靶体开孔直径与弹体直径的比值为0.3时,预损伤靶体与预开孔靶体中弹体侵彻深度差异较为明显,且随着比值进一步增加,两者差异逐渐增加;当靶体损伤状态一定时,减小弹体直径或增大尖卵形弹体头部CRH对增加侵彻深度更为有利。
  • 图  1  预损伤混凝土强度变化关系

    Figure  1.  Pre-damaged concrete strength change relationships

    图  2  弹体侵彻预损伤混凝土示意图

    Figure  2.  Schematic of penetration of projectile into pre-damaged concrete target

    图  3  预损伤混凝土靶体强度变化曲线

    Figure  3.  Strength curve of pre-damaged concrete target

    图  4  弹体侵彻锥型开孔损伤靶体示意图

    Figure  4.  Schematic diagram of projectile penetration into a conical drilled target

    图  5  射流侵彻混凝土试验布局

    Figure  5.  Experimental configuration for jet penetration into concrete

    图  6  靶体表面开孔损伤形态

    Figure  6.  Damage of the target surface after the test

    图  7  试验弹体尺寸

    Figure  7.  Size of projectile

    图  8  弹体飞行姿态

    Figure  8.  Projectile flight attitude

    图  9  试验后回收的弹体

    Figure  9.  Recovered projectile after the test

    图  10  靶体剖面图

    Figure  10.  View of concrete target section

    图  11  弹体侵彻混凝土靶面破坏形态

    Figure  11.  Damage of projectiles penetrating concrete targets

    图  12  不同侵彻条件下靶体开孔形态

    Figure  12.  Aperture morphology of concrete target under different penetration conditions

    图  13  弹体侵彻预损伤混凝土数值模拟模型建立过程

    Figure  13.  Development of a numerical simulation model for projectile penetration into pre-damaged concrete

    图  14  射流侵彻后靶体损伤状态

    Figure  14.  Concrete damage after jet penetration

    图  15  预损伤靶体中侵彻深度对比

    Figure  15.  Comparison of penetration depth in pre-damaged target

    图  16  弹体过载对比

    Figure  16.  Comparison of projectile deceleration

    图  17  弹体侵彻预开孔混凝土结果对比

    Figure  17.  Comparison of projectile penetration results into pre-drilled concrete

    图  18  完整靶体中侵彻深度对比

    Figure  18.  Comparison of penetration depth in intact target

    图  19  模型计算各类靶体示意图

    Figure  19.  Schematic diagram of concrete targets

    图  20  相对空腔半径与侵彻深度变化关系

    Figure  20.  Relationship between relative cavity radius and penetration depth

    图  21  相对空腔半径与弹体过载峰值变化关系

    Figure  21.  Relationship between relative cavity radius and the peak of deceleration

    图  22  弹体参数对侵彻深度的影响规律

    Figure  22.  The effect of projectile parameters on penetration depth

    图  23  弹体参数对过载峰值的影响规律

    Figure  23.  The effect of projectile parameters on the peak of deceleration

    表  1  射流侵彻混凝土试验结果

    Table  1.   Jet penetration test results

    靶体
    编号
    侵彻
    深度/
    mm
    不同孔径对应深度/ mm 开坑
    直径/
    mm
    开坑
    深度/
    mm
    开坑
    体积/L
    Φ6 mm Φ10 mm Φ15 mm
    3# 460 203 102 61 137 47 0.22
    4# 430 190 76 53 187 52 0.35
    8# 418 228 106 60 180 41 0.22
    下载: 导出CSV

    表  2  弹体侵彻预损伤混凝土试验结果

    Table  2.   Test results of pre-damage concrete penetrated by projectile

    靶体
    编号
    v0/
    (m·s−1)
    d/mm h1/mm DOP/mm 开坑容积/L
    射流 弹体侵彻
    预损伤靶
    射流 弹体侵彻
    预损伤靶
    射流 弹体侵彻
    预损伤靶
    射流 弹体侵彻
    预损伤靶
    3# 835 137 295 47 95 460 527 0.22 1.47
    4# 740 187 318 52 82 430 440 0.35 2.08
    8# 666 180 229 41 63 418 388 0.22 0.80
    下载: 导出CSV

    表  3  弹体侵彻完整混凝土试验结果

    Table  3.   Test results of intact concrete penetrated by projectile

    靶体编号v0/(m·s−1)d/mmh1/mmDOP/mm开坑容积/L
    1#83458010047610.56
    2#726463933795.11
    9#658418873722.42
    下载: 导出CSV

    表  4  混凝土靶体侵彻深度对比

    Table  4.   Comparative analysis of penetration depth in concrete targets under projectile impact

    初始速度/
    m·s−1
    侵彻深度/ mm
    试验 数值模拟
    射流侵彻 弹体侵彻预
    损伤靶体
    射流侵彻 弹体侵彻预
    损伤靶体
    835 460 527 434(−5.6 %) 520(−1.3 %)
    740 430 440 428(−2.7 %)
    666 418 388 387(0.3 %)
    下载: 导出CSV

    表  5  侵彻预损伤混凝土理论模型计算输入参数

    Table  5.   Input parameters for the theoretical model of penetration into pre-damaged concrete

    参数 靶体参数 弹体参数
    rcd/ mm rc/ mm h1/ mm a b rp/ mm CRH m/ g
    取值 1.5 4.5 436 0.1125 0.4375 15 3 550
    下载: 导出CSV

    表  6  侵彻预开孔混凝土理论模型计算输入参数

    Table  6.   Input parameters for the theoretical model of penetration into pre-drilled concrete

    参数来源 弹体参数 靶体参数
    v0/m·s−1 rp/mm CRH m/g a b fc/MPa
    Folsom[2] 107、206 44.3 1.25 5930.0 0 1 48.5
    Mostert[3] 350 10.0 2.11 141.6 0 1 20.0
    下载: 导出CSV

    表  7  侵彻混凝土理论模型计算输入参数

    Table  7.   Input parameters for the theoretical model of penetration into concrete

    参数 靶体参数 弹体参数
    rcd/mm rc/mm a b rp/mm CRH m/g
    取值 0 0 0 1 15 3 550
    下载: 导出CSV

    表  8  模型计算输入参数

    Table  8.   Input parameters for model simulation

    参数 靶体参数 弹体参数
    预损伤靶体 预开孔靶体 rp/mm CRH m/g
    a b h1 a b h1
    取值 0.1125 0.4375 436、+∞ 0 1 436、+∞ 15 3 550
    下载: 导出CSV

    表  9  模型计算输入参数

    Table  9.   Input parameters for model simulation

    参数 靶体参数 弹体参数
    rcd/mm rc/mm h1/mm a b rp/mm CRH m/g
    取值 3 3 436 0.1125 0.4375 \ \ 550
    下载: 导出CSV
  • [1] MURPHY M J. Performance analysis of two-stage munitions[C]//Proceedings of the 8th International Symposium on Ballistics. 1984: 23–25.
    [2] FOLSOM JR E N. Projectile penetration into concrete with an inline hole[R]. Lawrence Livermore National Lab. , CA (USA), 1987.
    [3] MOSTERT F J. Penetration of steel penetrators into concrete targets with pre-drilled cavities of different diameters[C]//18th International Symposium on Ballistics. 1999: 15–19.
    [4] TELAND J A. Cavity expansion theory applied to penetration of targets with pre-drilled cavities[C]//19th International Symposium on Ballistics. 2001: 7–11.
    [5] 王树有. 串联侵彻战斗部对钢筋混凝土介质的侵彻机理[D]. 南京: 南京理工大学, 2006. DOI: 10.7666/d.y1001879.

    WANG S Y. Penetration mechanism of reinforced concrete targets by tandem warhead[D]. Nanjing: Nanjing University of Science and Technology, 2006. DOI: 10.7666/d.y1001879.
    [6] 张雷雷, 黄风雷. 基于修正空腔膨胀理论的随进弹丸侵彻规律分析 [J]. 北京理工大学学报, 2006(12): 1038–1042. DOI: 10.3969/j.issn.1001-0645.2006.12.002.

    ZHANG L L, HUANG F L. Analysis on the penetration performance of a following projectile based on modified cavity expansion theory [J]. Transactions of Beijing Institute of Technology, 2006(12): 1038–1042. DOI: 10.3969/j.issn.1001-0645.2006.12.002.
    [7] SOHN D, HAN J. An empirical approach for penetration of tandem warheads into concrete targets [J]. Engineering Failure Analysis, 2021, 120: 105043. DOI: 10.1016/j.engfailanal.2020.105043.
    [8] HU F, WU H, FANG Q, et al. Impact performance of explosively formed projectile (EFP) into concrete targets [J]. International Journal of Impact Engineering, 2017, 109: 150–166. DOI: 10.1016/j.ijimpeng.2017.06.010.
    [9] HU F, WU H, FANG Q, et al. Impact resistance of concrete targets pre-damaged by explosively formed projectile (EFP) against rigid projectile [J]. International Journal of Impact Engineering, 2018, 122: 251–264. DOI: 10.1016/j. ijimpeng. 2018.08.014. DOI: 10.1016/j.ijimpeng.2018.08.014.
    [10] 许香照. 混凝土/钢筋混凝土的侵彻破坏行为研究[D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018. 000168.

    XU X Z. Research on failure behavior of concrete/reinforced concrete subjected to the penetration loading[D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000168.
    [11] 邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.

    DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
    [12] 李强, 姜春兰, 毛亮. 串联随进弹对预开孔跑道的斜侵彻研究 [J]. 振动与冲击, 2014, 33(5): 182–186. DOI: 10.13465/j.cnki.jvs.2014.05.033.

    LI Q, JIANG C L, MAO L. Oblique penetration of tandem projectiles to an airport runway holed in advance [J]. Journal of Vibration and Shock, 2014, 33(5): 182–186. DOI: 10.13465/j.cnki.jvs.2014.05.033.
    [13] 钟坤. 破孔—随嵌串联战斗部研究[D]. 南京: 南京理工大学, 2011. DOI: 10.7666/d.y1919567.

    ZHONG K. Study on penetration and follow-through tandem warhead[D]. Nanjing: Nanjing University of Science and Technology, 2011. DOI: 10.7666/d.y1919567.
    [14] 柯明, 范如玉, 吴海军, 等. 串联战斗部后级弹体对前级口径及自身初始姿态的适应性 [J]. 兵工学报, 2021, 42(S1): 22–32. DOI: 10.3969/j.issn.1000-1093.2016.05.006.

    KE M, FAN R Y, WU H J, et al. Adaptivity of travelling projectile of tandem warhead to caliber of precursor charge and initial attitude [J]. Acta Armamentarii, 2021, 42(S1): 22–32. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
    [15] FORRESTAL M J, ALTMAN B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [16] FORRESTAL M J, LUK V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427–444. DOI: 10.1016/0734-743X(92)90167-R.
    [17] ZHAI Y X, WU H, FANG Q. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles [J]. International Journal of Impact Engineering, 2021, 154: 103888. DOI: 10.1016/j.ijimpeng.2021.103888.
    [18] 高飞, 邓树新, 张国凯, 等. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析 [J]. 兵工学报, 2023, 44(12): 3601. DOI: 10.12382/bgxb.2023.0014.

    GAO F, DENG S X, ZHANG G K, et al. Experiment study and theoretical analysis of the size effect for scale model projectile penetration into rock target [J]. Acta Armamentarii, 2023, 44(12): 3601. DOI: 10.12382/bgxb.2023.0014.
    [19] 高欢, 翟越, 汪铁楠, 等. 隧道衬砌混凝土/岩石组合体动力学特性数值模拟研究 [J]. 振动与冲击, 2023, 42(11): 107–114+138. DOI: 10.13465/j.cnki.jvs.2023.11.013.

    GAO H, ZHAI Y. WANG T N, et al. Numerical simulation of dynamic characteristics of tunnel lining concrete/rock interface [J]. Journal of Vibration and Shock, 2023, 42(11): 107–114+138. DOI: 10.13465/j.cnki.jvs.2023.11.013.
    [20] 刘兵, 郭瑞奇, 康雨嫣, 等. 刚性弹体侵彻混凝土和花岗岩数值模拟研究 [J]. 湘潭大学学报(自然科学版), 2024, 46(04): 28–36. DOI: 10.13715/j.issn.2096-644X.20230601.0001.

    LIU B, GUO R Q, KANG Y Y, et al. Numerical simulation of rigid projectile penetrating concrete and granite [J]. Journal of Xiangtan University (Natural Science Edition), 2024, 46(04): 28–36. DOI: 10.13715/j.issn.2096-644X.20230601.0001.
    [21] 罗忠建. 弹体侵彻预损伤混凝土研究[D]. 南京: 南京理工大学, 2012.

    LUO Z J. Study of projectile penetration into pre-damaged concrete[D]. Nanjing: Nanjing University of Science and Technology, 2012.
    [22] 张晓伟. 药型罩材料对聚能射流侵彻典型高强度混凝土的影响研究[D]. 南京: 南京理工大学, 2020.

    ZHANG X W. Study on the effect of shaped shield material on shaped energy jet penetrating typical high-strength concrete[D]. Nanjing: Nanjing University of Science and Technology, 2020.
  • 加载中
图(23) / 表(9)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  60
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 修回日期:  2025-05-15
  • 网络出版日期:  2025-05-16

目录

    /

    返回文章
    返回