Study on the influence of concrete pre-damage on the performance of projectile penetration
-
摘要: 为研究混凝土靶体损伤对弹体侵彻性能的影响效果,基于空腔膨胀理论,完善了弹体侵彻预损伤混凝土半经验模型,采用前级射流、后级动能弹体对混凝土靶进行了连续侵彻试验,获得了影响弹体侵彻预损伤混凝土性能的关键因素,结合预损伤混凝土靶体中混凝土材料强度变化关系,分析了弹靶参数对弹体二次侵彻性能的影响规律。结果表明:靶体预损伤对弹体侵彻深度的增益效果由开坑体积差及混凝土损伤共同影响,且混凝土损伤为主要影响因素;当靶体内存在有限长损伤区,靶体开孔直径是弹体直径的0.3~0.5倍时,靶体损伤对弹体侵彻深度增益最为明显;当靶体内存在贯穿损伤区,靶体开孔直径与弹体直径的比值为0.3时,预损伤靶体与预开孔靶体中弹体侵彻深度差异较为明显,且随着比值进一步增加,两者差异逐渐增加;当靶体损伤状态一定时,减小弹体直径或增大尖卵形弹体头部CRH对增加侵彻深度更为有利。Abstract: In order to investigate the impact of target damage on projectile penetration performance, a series of penetration experiments were conducted on a concrete target utilising a former jet and a subsequent kinetic energy projectile. The critical factors influencing the performance of pre-damaged concrete penetrated by the projectile were analyzed. The relationship between the strength of the concrete materials in the pre-damaged concrete target was determined. Based on this, a semi-empirical model of projectile penetration of pre-damaged concrete was established by combining the aforementioned cavity expansion theory with the results of the preceding analysis. The impact of projectile and target parameters on the performance of secondary penetration of the projectile was then analyzed. The findings indicate that the impact of pre-damaged concrete on the depth of projectile penetration is contingent upon the discrepancy in crater volume and concrete damage. It can be posited that the damage to the target is the predominant influencing factor. When there is a finite-length damage zone within the concrete target and the diameter of the cavity of the target is between 0.3 and 0.5 time the diameter of the projectile, the effect is even less pronounced. When a finite-length damage zone exists within the target, the pre-damage cavity is 0.3-0.5 times the diameter of the projectile. In this instance, the gain in depth of penetration is most pronounced. In the event of penetrating damage to the target, a ratio of 0.3 between the diameter of the target tunnel and that of the projectile is observed. The difference in penetration depth between the pre-damaged target and the pre-drilled target is found to be greater, with a gradual increase in this difference as the ratio increases further. When the damage state of the target is certain, decreasing the projectile diameter or increasing the CRH of the ogive-nosed projectile is more advantageous to increase the depth of penetration.
-
Key words:
- pre-damaged concrete /
- numerical simulation /
- shaped charge /
- high-speed penetration
-
表 1 射流侵彻混凝土试验结果
Table 1. Jet penetration test results
靶体
编号侵彻
深度/
mm不同孔径对应深度/ mm 开坑
直径/
mm开坑
深度/
mm开坑
体积/LΦ6 mm Φ10 mm Φ15 mm 3# 460 203 102 61 137 47 0.22 4# 430 190 76 53 187 52 0.35 8# 418 228 106 60 180 41 0.22 表 2 弹体侵彻预损伤混凝土试验结果
Table 2. Test results of pre-damage concrete penetrated by projectile
靶体
编号v0/
(m·s−1)d/mm h1/mm DOP/mm 开坑容积/L 射流 弹体侵彻
预损伤靶射流 弹体侵彻
预损伤靶射流 弹体侵彻
预损伤靶射流 弹体侵彻
预损伤靶3# 835 137 295 47 95 460 527 0.22 1.47 4# 740 187 318 52 82 430 440 0.35 2.08 8# 666 180 229 41 63 418 388 0.22 0.80 表 3 弹体侵彻完整混凝土试验结果
Table 3. Test results of intact concrete penetrated by projectile
靶体编号 v0/(m·s−1) d/mm h1/mm DOP/mm 开坑容积/L 1# 834 580 100 476 10.56 2# 726 463 93 379 5.11 9# 658 418 87 372 2.42 表 4 混凝土靶体侵彻深度对比
Table 4. Comparative analysis of penetration depth in concrete targets under projectile impact
初始速度/
m·s−1侵彻深度/ mm 试验 数值模拟 射流侵彻 弹体侵彻预
损伤靶体射流侵彻 弹体侵彻预
损伤靶体835 460 527 434(−5.6 %) 520(−1.3 %) 740 430 440 428(−2.7 %) 666 418 388 387(0.3 %) 表 5 侵彻预损伤混凝土理论模型计算输入参数
Table 5. Input parameters for the theoretical model of penetration into pre-damaged concrete
参数 靶体参数 弹体参数 rcd/ mm rc/ mm h1/ mm a b rp/ mm CRH m/ g 取值 1.5 4.5 436 0.1125 0.4375 15 3 550 表 6 侵彻预开孔混凝土理论模型计算输入参数
Table 6. Input parameters for the theoretical model of penetration into pre-drilled concrete
表 7 侵彻混凝土理论模型计算输入参数
Table 7. Input parameters for the theoretical model of penetration into concrete
参数 靶体参数 弹体参数 rcd/mm rc/mm a b rp/mm CRH m/g 取值 0 0 0 1 15 3 550 表 8 模型计算输入参数
Table 8. Input parameters for model simulation
参数 靶体参数 弹体参数 预损伤靶体 预开孔靶体 rp/mm CRH m/g a b h1 a b h1 取值 0.1125 0.4375 436、+∞ 0 1 436、+∞ 15 3 550 表 9 模型计算输入参数
Table 9. Input parameters for model simulation
参数 靶体参数 弹体参数 rcd/mm rc/mm h1/mm a b rp/mm CRH m/g 取值 3 3 436 0.1125 0.4375 \ \ 550 -
[1] MURPHY M J. Performance analysis of two-stage munitions[C]//Proceedings of the 8th International Symposium on Ballistics. 1984: 23–25. [2] FOLSOM JR E N. Projectile penetration into concrete with an inline hole[R]. Lawrence Livermore National Lab. , CA (USA), 1987. [3] MOSTERT F J. Penetration of steel penetrators into concrete targets with pre-drilled cavities of different diameters[C]//18th International Symposium on Ballistics. 1999: 15–19. [4] TELAND J A. Cavity expansion theory applied to penetration of targets with pre-drilled cavities[C]//19th International Symposium on Ballistics. 2001: 7–11. [5] 王树有. 串联侵彻战斗部对钢筋混凝土介质的侵彻机理[D]. 南京: 南京理工大学, 2006. DOI: 10.7666/d.y1001879.WANG S Y. Penetration mechanism of reinforced concrete targets by tandem warhead[D]. Nanjing: Nanjing University of Science and Technology, 2006. DOI: 10.7666/d.y1001879. [6] 张雷雷, 黄风雷. 基于修正空腔膨胀理论的随进弹丸侵彻规律分析 [J]. 北京理工大学学报, 2006(12): 1038–1042. DOI: 10.3969/j.issn.1001-0645.2006.12.002.ZHANG L L, HUANG F L. Analysis on the penetration performance of a following projectile based on modified cavity expansion theory [J]. Transactions of Beijing Institute of Technology, 2006(12): 1038–1042. DOI: 10.3969/j.issn.1001-0645.2006.12.002. [7] SOHN D, HAN J. An empirical approach for penetration of tandem warheads into concrete targets [J]. Engineering Failure Analysis, 2021, 120: 105043. DOI: 10.1016/j.engfailanal.2020.105043. [8] HU F, WU H, FANG Q, et al. Impact performance of explosively formed projectile (EFP) into concrete targets [J]. International Journal of Impact Engineering, 2017, 109: 150–166. DOI: 10.1016/j.ijimpeng.2017.06.010. [9] HU F, WU H, FANG Q, et al. Impact resistance of concrete targets pre-damaged by explosively formed projectile (EFP) against rigid projectile [J]. International Journal of Impact Engineering, 2018, 122: 251–264. DOI: 10.1016/j. ijimpeng. 2018.08.014. DOI: 10.1016/j.ijimpeng.2018.08.014. [10] 许香照. 混凝土/钢筋混凝土的侵彻破坏行为研究[D]. 北京: 北京理工大学, 2018. DOI: 10.26948/d.cnki.gbjlu.2018. 000168.XU X Z. Research on failure behavior of concrete/reinforced concrete subjected to the penetration loading[D]. Beijing: Beijing Institute of Technology, 2018. DOI: 10.26948/d.cnki.gbjlu.2018.000168. [11] 邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006. [12] 李强, 姜春兰, 毛亮. 串联随进弹对预开孔跑道的斜侵彻研究 [J]. 振动与冲击, 2014, 33(5): 182–186. DOI: 10.13465/j.cnki.jvs.2014.05.033.LI Q, JIANG C L, MAO L. Oblique penetration of tandem projectiles to an airport runway holed in advance [J]. Journal of Vibration and Shock, 2014, 33(5): 182–186. DOI: 10.13465/j.cnki.jvs.2014.05.033. [13] 钟坤. 破孔—随嵌串联战斗部研究[D]. 南京: 南京理工大学, 2011. DOI: 10.7666/d.y1919567.ZHONG K. Study on penetration and follow-through tandem warhead[D]. Nanjing: Nanjing University of Science and Technology, 2011. DOI: 10.7666/d.y1919567. [14] 柯明, 范如玉, 吴海军, 等. 串联战斗部后级弹体对前级口径及自身初始姿态的适应性 [J]. 兵工学报, 2021, 42(S1): 22–32. DOI: 10.3969/j.issn.1000-1093.2016.05.006.KE M, FAN R Y, WU H J, et al. Adaptivity of travelling projectile of tandem warhead to caliber of precursor charge and initial attitude [J]. Acta Armamentarii, 2021, 42(S1): 22–32. DOI: 10.3969/j.issn.1000-1093.2016.05.006. [15] FORRESTAL M J, ALTMAN B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4. [16] FORRESTAL M J, LUK V K. Penetration into soil targets [J]. International Journal of Impact Engineering, 1992, 12(3): 427–444. DOI: 10.1016/0734-743X(92)90167-R. [17] ZHAI Y X, WU H, FANG Q. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles [J]. International Journal of Impact Engineering, 2021, 154: 103888. DOI: 10.1016/j.ijimpeng.2021.103888. [18] 高飞, 邓树新, 张国凯, 等. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析 [J]. 兵工学报, 2023, 44(12): 3601. DOI: 10.12382/bgxb.2023.0014.GAO F, DENG S X, ZHANG G K, et al. Experiment study and theoretical analysis of the size effect for scale model projectile penetration into rock target [J]. Acta Armamentarii, 2023, 44(12): 3601. DOI: 10.12382/bgxb.2023.0014. [19] 高欢, 翟越, 汪铁楠, 等. 隧道衬砌混凝土/岩石组合体动力学特性数值模拟研究 [J]. 振动与冲击, 2023, 42(11): 107–114+138. DOI: 10.13465/j.cnki.jvs.2023.11.013.GAO H, ZHAI Y. WANG T N, et al. Numerical simulation of dynamic characteristics of tunnel lining concrete/rock interface [J]. Journal of Vibration and Shock, 2023, 42(11): 107–114+138. DOI: 10.13465/j.cnki.jvs.2023.11.013. [20] 刘兵, 郭瑞奇, 康雨嫣, 等. 刚性弹体侵彻混凝土和花岗岩数值模拟研究 [J]. 湘潭大学学报(自然科学版), 2024, 46(04): 28–36. DOI: 10.13715/j.issn.2096-644X.20230601.0001.LIU B, GUO R Q, KANG Y Y, et al. Numerical simulation of rigid projectile penetrating concrete and granite [J]. Journal of Xiangtan University (Natural Science Edition), 2024, 46(04): 28–36. DOI: 10.13715/j.issn.2096-644X.20230601.0001. [21] 罗忠建. 弹体侵彻预损伤混凝土研究[D]. 南京: 南京理工大学, 2012.LUO Z J. Study of projectile penetration into pre-damaged concrete[D]. Nanjing: Nanjing University of Science and Technology, 2012. [22] 张晓伟. 药型罩材料对聚能射流侵彻典型高强度混凝土的影响研究[D]. 南京: 南京理工大学, 2020.ZHANG X W. Study on the effect of shaped shield material on shaped energy jet penetrating typical high-strength concrete[D]. Nanjing: Nanjing University of Science and Technology, 2020. -


下载: