• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

掺氨量对管道氨气-氢气-空气预混气体爆燃特性的影响

葛雨 汪泉 朱文艳 李瑞 冯鼎玉 徐建设 杨耀勇

葛雨, 汪泉, 朱文艳, 李瑞, 冯鼎玉, 徐建设, 杨耀勇. 掺氨量对管道氨气-氢气-空气预混气体爆燃特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0123
引用本文: 葛雨, 汪泉, 朱文艳, 李瑞, 冯鼎玉, 徐建设, 杨耀勇. 掺氨量对管道氨气-氢气-空气预混气体爆燃特性的影响[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0123
GE Yu, WANG Quan, ZHU Wenyan, LI Rui, FENG Dingyu, XU Jianshe, YANG Yaoyong. Influence of ammonia content on ammonia-hydrogen-air premixed gas duct-vented explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0123
Citation: GE Yu, WANG Quan, ZHU Wenyan, LI Rui, FENG Dingyu, XU Jianshe, YANG Yaoyong. Influence of ammonia content on ammonia-hydrogen-air premixed gas duct-vented explosions[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0123

掺氨量对管道氨气-氢气-空气预混气体爆燃特性的影响

doi: 10.11883/bzycj-2025-0123
基金项目: 安徽省重点研究与开发计划社会领域项目(2023g07020002)
详细信息
    作者简介:

    葛 雨(1998- ),女,硕士,786026710@qq.com

    通讯作者:

    汪 泉(1980- ),男,博士,教授,博士生导师,wqaust@163.com

  • 中图分类号: O381

Influence of ammonia content on ammonia-hydrogen-air premixed gas duct-vented explosions

  • 摘要: 为了深入研究氨气-氢气-空气预混气体火焰在管道内外的燃烧特性,在长2000 mm的不锈钢管道中开设尺寸为400 mm×70 mm的观察窗,借助高速摄影和压力传感器,测试分析了化学计量比(Ф=1)的条件下掺氨量(φ)在30%~85%范围内对火焰形态和管道内外压力演化的影响。结果表明,掺氨量(φ)会显著影响管道中火焰的传播过程以及压力时程曲线。管道内火焰的传播速度随掺氨量的增加而降低,到达由二次爆炸引起的回流现象的时间也随之延长;管内距离泄爆口400 mm处设置压力测点PS1采集数据,各工况下管道内压力曲线均呈现p1p2p3的三峰结构,3个压力峰分别由泄爆口薄膜破裂、管内气体泄放以及管外二次爆炸产生的气体回流引起,p1的大小取决于泄爆膜的抗拉强度,其幅值几乎与掺氨量(φ)无关,p2p3均随着掺氨量(φ)的增加而升高,其中p3升高速率最大;管外距离泄爆口500 mm处设置压力测点PS2采集数据,管外二次爆炸压力峰值(pout)随着掺氨量(φ)的增加而降低,到达pout的时间则随之延长。
  • 图  1  预混火焰传播实验装置示意图

    Figure  1.  Sketch of premixed flame propagation experimental setup

    图  2  典型实验数据

    Figure  2.  Typical experimental data

    图  3  φ=35%时管道内外的火焰图像

    Figure  3.  Flame images inside and outside the duct at φ=35%

    图  4  φ=45%时管道内外的火焰图像

    Figure  4.  Flame images inside and outside the duct at φ=45%

    图  5  φ=25%~50%时管道内火焰逆流图像

    Figure  5.  Images of reverse flow flame inside the duct at φ=25%-50%

    图  6  φ=45%时管内火焰锋面位置变化及火焰传播速度

    Figure  6.  Location of flame front and flame speed in the duct at φ=45%

    图  7  不同φ对管内火焰传播速度的影响

    Figure  7.  Flame propagation speed in the duct for different φ

    图  8  φ=30%, 35%条件下管内压力的对比

    Figure  8.  Comparison of the pressure in the duct under the condition of φ=30%, 35%

    图  9  φ=45%, 50% 条件下管内压力的对比

    Figure  9.  Comparison of the pressure in the duct under the condition of φ=45%, 50%

    图  10  φ=55%, 60%, 65%条件下管内压力的对比

    Figure  10.  Comparison of the pressure in the duct under the conditions of φ=55%, 60%, 65%

    图  11  管内不同φ条件下p1p2p3的比较

    Figure  11.  Comparison of p1, p2, p3 in the duct under different φ values

    图  12  不同φ条件下管内p3和dp3/dt的变化趋势

    Figure  12.  Trend of P3 and dp3/dt in the duct under different φ values

    图  13  不同φ条件下管外pout随时间的变化趋势

    Figure  13.  Trend of pout outside the duct with time under different φ values

    图  14  不同φ条件下Δtpout的变化趋势

    Figure  14.  Trend of Δt and pout under different φ values

    表  1  PCB 113B24压电式压力传感器参数

    Table  1.   Parameters of PCB 113B24 piezoelectric pressure sensor

    技术指标 参数范围
    量程 0~13.79 kPa
    最大压力 68.95 MPa
    分辨率 0.035 pPa
    谐振频率 ≥500 kHz
    上升时间 ≤1 μs
    非线性度 ≤1%
    放电时间常数 ≤1.4Pa/(m·s−2)
    加速度灵敏度 >100 s
    下载: 导出CSV

    表  2  联能CY-YD-202压电式压力传感器参数

    Table  2.   Parameters of CY-YD-202 piezoelectric pressure sensor

    技术指标 参数范围
    量程 0~10 MPa
    过载能力 120%
    参考压力灵敏度 32.3pC/105 Pa
    自振频率 >100 kHz
    电容 43.3 pF
    工作温度 -10~80 ℃
    非线性 <1.5%FS
    绝缘电阻 >1012 Ω
    下载: 导出CSV

    表  3  配制气体方案

    Table  3.   Schemes of gas distribution

    NOΦφV(NH3)/%V(H2)/%V(air)/%
    118519.613.4678.25
    28018.714.6877.94
    37517.795.9377.61
    47016.847.2277.27
    56515.868.5476.93
    66014.859.9076.58
    75513.8111.3076.21
    85012.7512.7575.83
    94511.6514.2375.45
    104010.5115.7775.05
    11359.3417.3574.64
    12308.1318.9874.21
    下载: 导出CSV
  • [1] VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power [J]. Progress in Energy and Combustion Science, 2018, 69: 63–102. DOI: 10.1016/j.pecs.2018.07.001.
    [2] ORUC O, DINCER I. Assessing the potential of thermo-chemical water splitting cycles: A bridge towards clean and sustainable hydrogen generation [J]. Fuel, 2021, 286: 119325. DOI: 10.1016/j.fuel.2020.119325.
    [3] ISLAM A, ISLAM T, MAHMUD H, et al. Accelerating the green hydrogen revolution: A comprehensive analysis of technological advancements and policy interventions [J]. International Journal of Hydrogen Energy, 2024, 67: 458–486. DOI: 10.1016/j.ijhydene.2024.04.142.
    [4] AZIZ M, JUANGSA F B, IRHAMNA A R, et al. Ammonia utilization technology for thermal power generation: A review [J]. Journal of the Energy Institute, 2023, 111: 101365. DOI: 10.1016/j.joei.2023.101365.
    [5] WU Z J, YU Y, XIE W, et al. Optimization of the flame characteristics of H2–O2 coaxial injection applied to hydrogen-fueled argon cycle engines [J]. International Journal of Hydrogen Energy, 2021, 46(27): 14780–14789. DOI: 10.1016/j.ijhydene.2021.01.197.
    [6] VAN DEN SCHOOR F, VERPLAETSEN F, BERGHMANS J. Calculation of the upper flammability limit of methane/hydrogen/air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2008, 33(4): 1399–1406. DOI: 10.1016/j.ijhydene.2008.01.002.
    [7] SU B, DONG H W, LUO Z M, et al. Effects of H2/CO ratio and CO2 dilution on the explosion behavior and flame evolution of syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2024, 69: 451–465. DOI: 10.1016/j.ijhydene.2024.04.360.
    [8] ICHIKAWA Y, OTAWARA Y, KOBAYASHI H, et al. Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure [J]. Proceedings of the Combustion Institute, 2011, 33(1): 1543–1550. DOI: 10.1016/j.proci.2010.05.068.
    [9] LEE M C, YOON J, JOO S, et al. Gas turbine combustion characteristics of H2/CO synthetic gas for coal integrated gasification combined cycle applications [J]. International Journal of Hydrogen Energy, 2015, 40(34): 11032–11045. DOI: 10.1016/j.ijhydene.2015.06.086.
    [10] WANG L, JIANG Y, PAN L W, et al. Lagrangian investigation and chemical explosive mode analysis of extinction and re-ignition in H2/CO/N2 syngas non-premixed flame [J]. International Journal of Hydrogen Energy, 2016, 41(8): 4820–4830. DOI: 10.1016/j.ijhydene.2016.01.043.
    [11] SU B, LUO Z M, KRIETSCH A, et al. Quantitative investigation of explosion behavior and spectral radiant characteristics of free radicals for syngas/air mixtures [J]. International Journal of Hydrogen Energy, 2024, 50: 1359–1368. DOI: 10.1016/j.ijhydene.2023.10.280.
    [12] KOJIMA Y, YAMAGUCHI M. Ammonia as a hydrogen energy carrier [J]. International Journal of Hydrogen Energy, 2022, 47(54): 22832–22839. DOI: 10.1016/j.ijhydene.2022.05.096.
    [13] SUN S C, JIANG Q Q, ZHAO D Y, et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production [J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112918. DOI: 10.1016/j.rser.2022.112918.
    [14] LAMB K E, DOLAN M D, KENNEDY D F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification [J]. International Journal of Hydrogen Energy, 2019, 44(7): 3580–3593. DOI: 10.1016/j.ijhydene.2018.12.024.
    [15] YU Z, ZHANG H W. End-gas autoignition and knocking combustion of ammonia/hydrogen/air mixtures in a confined reactor [J]. International Journal of Hydrogen Energy, 2022, 47(13): 8585–8602. DOI: 10.1016/j.ijhydene.2021.12.181.
    [16] ZHANG F Y, ZHANG G X, WANG Z C, et al. Experimental investigation on combustion and emission characteristics of non-premixed ammonia/hydrogen flame [J]. International Journal of Hydrogen Energy, 2024, 61: 25–38. DOI: 10.1016/j.ijhydene.2024.02.281.
    [17] WU Z J, ZHANG G Y, WANG C X, et al. Numerical investigation on the flame propagation process of ammonia/hydrogen blends under engine-related conditions [J]. International Journal of Hydrogen Energy, 2024, 60: 1041–1053. DOI: 10.1016/j.ijhydene.2024.02.186.
    [18] TINGAS E A, GKANTONAS S, MASTORAKOS E, et al. The mechanism of propagation of NH3/air and NH3/H2/air laminar premixed flame fronts [J]. International Journal of Hydrogen Energy, 2024, 78: 1004–1015. DOI: 10.1016/j.ijhydene.2024.06.289.
    [19] ICHIKAWA A, NAITO Y, HAYAKAWA A, et al. Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure [J]. International Journal of Hydrogen Energy, 2019, 44(13): 6991–6999. DOI: 10.1016/j.ijhydene.2019.01.193.
    [20] KURATA O, IKI N, INOUE T, et al. Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation [J]. Proceedings of the Combustion Institute, 2019, 37: 4587–4595. DOI: 10.1016/j.proci.2018.09.012.
    [21] LIANG H, YAN X Q, SHI E H, et al. Flame evolution and pressure dynamics of premixed stoichiometric ammonia/hydrogen/air in a closed duct [J]. Fuel, 2024, 363: 130983. DOI: 10.1016/j.fuel.2024.130983.
    [22] LHUILLIER C, BREQUIGNY P, LAMOUREUX N, et al. Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures [J]. Fuel, 2020, 263: 116653. DOI: 10.1016/j.fuel.2019.116653.
    [23] ZHENG K, SONG Z Y, SONG C, et al. Investigation on the explosion of ammonia/hydrogen/air in a closed duct by experiments and numerical simulations [J]. International Journal of Hydrogen Energy, 2024, 79: 1267–1277. DOI: 10.1016/j.ijhydene.2024.07.124.
    [24] VEIGA-LÓPEZ F, MÉVEL R. Detonation properties and nitrogen oxide production in ammonia–hydrogen–air mixtures [J]. Fuel, 2024, 370: 131794. DOI: 10.1016/j.fuel.2024.131794.
    [25] WANG J G, GUO J, YANG F Q, et al. Effects of hydrogen concentration on the vented deflagration of hydrogen-air mixtures in a 1-m3 vessel [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21161–21168. DOI: 10.1016/j.ijhydene.2018.09.108.
    [26] SHRESTHA K P, LHUILLIER C, BARBOSA A A, et al. An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature [J]. Proceedings of the Combustion Institute, 2021, 38(2): 2163–2174. DOI: 10.1016/j.proci.2020.06.197.
    [27] CHEN X, LIU Q M, JING Q, et al. Flame front evolution and laminar flame parameter evaluation of buoyancy-affected ammonia/air flames [J]. International Journal of Hydrogen Energy, 2021, 46(77): 38504–38518. DOI: 10.1016/j.ijhydene.2021.09.099.
    [28] LI Y C, BI M S, ZHOU Y H, et al. Characteristics of hydrogen-ammonia-air cloud explosion [J]. Process Safety and Environmental Protection, 2021, 148: 1207–1216. DOI: 10.1016/j.psep.2021.02.037.
    [29] YANG X F, YANG W, LIU C L, et al. Experimental study on the deformation and oscillation of premixed syngas/air flames in closed ducts [J]. Process Safety and Environmental Protection, 2023, 179: 373–383. DOI: 10.1016/j.psep.2023.09.011.
    [30] CAO W G, LIU Y F, CHEN R K, et al. Pressure release characteristics of premixed hydrogen-air mixtures in an explosion venting device with a duct [J]. International Journal of Hydrogen Energy, 2021, 46(12): 8810–8819. DOI: 10.1016/j.ijhydene.2020.12.052.
    [31] WANG Q, ZHU W Y, YANG R, et al. Impact of ammonia content on explosion of methane-air premixed gas duct with varying equivalence ratios [J]. Flow, Turbulence and Combustion, 2025, 115: 763–780. DOI: 10.1007/s10494-025-00647-6.
    [32] ZHU W Y, WANG Q, LI R, et al. Experimental study on the equivalence ratio effects in ammonia-hydrogen-air premixed gas duct-vented explosions [J]. International Journal of Hydrogen Energy, 2024, 88: 977–985. DOI: 10.1016/j.ijhydene.2024.09.262.
    [33] 朱文艳, 汪泉, 张军, 等. 泄爆条件对管内气粉两相混合体系燃爆特性的影响 [J]. 爆炸与冲击, 2024, 44(7): 075402. DOI: 10.11883/bzycj-2024-0024.

    ZHU W Y, WANG Q, ZHANG J, et al. Influence of explosion venting conditions on the deflagration characteristics of gas-powder two-phase mixture system in pipe [J]. Explosion and Shock Waves, 2024, 44(7): 075402. DOI: 10.11883/bzycj-2024-0024.
    [34] PONIZY B, CLAVERIE A, VEYSSIÈRE B. Tulip flame-the mechanism of flame front inversion [J]. Combustion and Flame, 2014, 161(12): 3051–3062. DOI: 10.1016/j.combustflame.2014.06.001.
    [35] ZHU X R, ROBERTS W L, GUIBERTI T F. UV-visible chemiluminescence signature of laminar ammonia-hydrogen-air flames [J]. Proceedings of the Combustion Institute, 2023, 39(4): 4227–4235. DOI: 10.1016/j.proci.2022.07.021.
    [36] KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 416–428. DOI: 10.1016/j.jlp.2015.04.013.
    [37] QIU D Y, CHEN X F, HAO L J, et al. Partial suppression of acetaminophen dust explosion by synergistic multiphase inhibitors [J]. Process Safety and Environmental Protection, 2023, 172: 262–272. DOI: 10.1016/j.psep.2023.02.021.
    [38] CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2367–2374. DOI: 10.1016/j.proci.2010.06.144.
    [39] HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447–459. DOI: 10.1016/j.jlp.2015.04.005.
    [40] GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio [J]. Industrial and Engineering Chemistry Research, 2016, 55(35): 9518–9523. DOI: 10.1021/acs.iecr.6b02029.
    [41] XIAO H H, SUN J H, CHEN P. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber [J]. Journal of Hazardous Materials, 2014, 268: 132–139. DOI: 10.1016/j.jhazmat.2013.12.060.
    [42] WANG C H, GUO J, ZHANG K, et al. Experiments on duct-vented explosion of hydrogen-methane-air mixtures: effects of equivalence ratio [J]. Fuel, 2022, 308: 122060. DOI: 10.1016/j.fuel.2021.122060.
    [43] TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 169–181. DOI: 10.1016/j.jlp.2015.04.014.
    [44] 杜赛枫, 张凯, 陈昊, 等. 破膜压力对氢-空气预混气体燃爆特性的影响 [J]. 爆炸与冲击, 2023, 43(2): 025401. DOI: 10.11883/bzycj-2022-0174.

    DU S F, ZHANG K, CHEN H, et al. Effects of vent burst pressure on explosion characteristics of premixed hydrogen-air gases [J]. Explosion and Shock Waves, 2023, 43(2): 025401. DOI: 10.11883/bzycj-2022-0174.
    [45] TANG G, JIN P F, BAO Y L, et al. Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia [J]. International Journal of Hydrogen Energy, 2021, 46(39): 20765–20776. DOI: 10.1016/j.ijhydene.2021.03.154.
    [46] 陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.

    CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
    [47] GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2015, 40(45): 15780–15788. DOI: 10.1016/j.ijhydene.2015.09.038.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  40
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 修回日期:  2025-08-12
  • 网络出版日期:  2025-08-12

目录

    /

    返回文章
    返回