• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高压储氢气瓶爆炸能量演化机制及威力评估

李贝 于浩申 韩冰 戴行涛 李广印 刘岩

李贝, 于浩申, 韩冰, 戴行涛, 李广印, 刘岩. 高压储氢气瓶爆炸能量演化机制及威力评估[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0128
引用本文: 李贝, 于浩申, 韩冰, 戴行涛, 李广印, 刘岩. 高压储氢气瓶爆炸能量演化机制及威力评估[J]. 爆炸与冲击. doi: 10.11883/bzycj-2025-0128
LI Bei, YU Haoshen, HAN Bing, DAI Xingtao, LI Guangyin, LIU Yan. Energy dynamics and power evaluation method of high pressure hydrogen storage tank explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0128
Citation: LI Bei, YU Haoshen, HAN Bing, DAI Xingtao, LI Guangyin, LIU Yan. Energy dynamics and power evaluation method of high pressure hydrogen storage tank explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2025-0128

高压储氢气瓶爆炸能量演化机制及威力评估

doi: 10.11883/bzycj-2025-0128
基金项目: 国家市场监督管理总局重点实验室(气瓶安全技术)开放课题(2023K01);国家市场监管总局科技计划项目(2024MK131)
详细信息
    作者简介:

    李 贝(1989- ),男,副教授,libei422@dlut.edu.cn

    通讯作者:

    韩 冰(1979- ),女,正高级工程师,hb_dbpvi@126.com

  • 中图分类号: O389

Energy dynamics and power evaluation method of high pressure hydrogen storage tank explosion

  • 摘要: 为掌握火灾环境下高压储氢气瓶爆炸能量产生、转化及耗散机制对气瓶爆炸的影响,以充装氢气和氮气的6.8L-30MPa Ⅲ型高压气瓶爆炸引发试验为基础,开展了气瓶极限承压判据、爆炸动力学行为及威力评估研究。结果表明:火灾可显著降低气瓶承压能力,气瓶的临界爆破压力由常温时的125.1 MPa降至火灾时的46.8 MPa,承压能力下降约62.6%。储氢气瓶爆炸呈现典型的物理-化学复合特征,产生了直径约9 m的火球,冲击波峰值压力在距离爆源2 m处达882.47 kPa,正压持续时间为168.11 ms;相同位置处的氮气瓶爆炸冲击波峰值为59.42 kPa,正压持续时间为2.17 ms,爆炸威力远小于氢气瓶。探讨了开敞环境下氢气瓶与氮气瓶爆炸能量的转化路径,建立了开敞环境下储氢气瓶爆炸威力评估方法,研究结果可对完善高压储氢气瓶爆炸事故风险评估提供参考。
  • 图  1  储氢气瓶爆炸引发试验系统示意图

    Figure  1.  Schematic of explosion initiation test system for hydrogen storage tank

    图  2  充装不同介质(H2和N2)的高压气瓶爆炸形态

    Figure  2.  Explosion morphologies of high-pressure tanks filled with different gas media (H2 and N2)

    图  3  气瓶爆炸后破片的分布特征

    Figure  3.  Distribution characteristics of fragments after the gas tank explosion

    图  4  距离爆源2 m处的爆炸冲击波超压-时间曲线

    Figure  4.  Pressure transient at a distance of 2 m from the explosion source

    图  5  典型Ⅲ型瓶常温及火灾环境下的承压极限判据[2,8,12]

    Figure  5.  The criteria for the ultimate bursting pressure-bearing capacity of typical type Ⅲ tanks under normal temperature and fire environment [2,8,12]

    图  6  火灾环境下高压储氢瓶爆炸机理

    Figure  6.  The explosion mechanism of high-pressure hydrogen storage tanks in a fire environment

    图  7  能量评估的步骤和方法

    Figure  7.  Steps and methodology for energy assessment

    图  8  不同模型下6.8L储氢罐的总能量与等效TNT当量质量

    Figure  8.  The total energy and equivalent TNT mass of the 6.8 L hydrogen storage tank under different models

    表  1  火灾环境下典型Ⅲ型瓶极限承压判据

    Table  1.   Criteria for the pressure-bearing limit of typical type Ⅲ tanks

    公称容积-公称工作压力6.8L-30MPa6.8L-30MPa210L-35MPa*L-35MPa
    数据来源文献[12]本研究文献[2]文献[8]
    气瓶水爆压力/MPa125.07(±3.85)125.07(±3.85)123.5(±11.75)122.8
    火源油池油池油池丙烷燃烧器
    火烧燃爆引发方式整体整体局部+整体整体
    放置方式垂直垂直水平水平
    充装介质H2N2H2He
    初始充装压力/MPa30.5829.9832.225
    爆炸临界压力/MPa46.849.341.153.5
    火灾中承压性能下降幅度62.60%60.60%66.70%56.40%
     注:文献[8]为日本汽车研究所气瓶火烧爆炸试验研究数据,气瓶编号为9#,未查阅到公称容积等信息。
    下载: 导出CSV

    表  2  气瓶爆炸超压能量计算结果

    Table  2.   Tank explosion overpressure energy calculation results

    气瓶 介质 pb/MPa mgas/kg Eam/MJ Eac/MJ E/MJ WTNT/kg
    气瓶A
    (6.8L-30MPa)
    氢气 46.8 0.15 EBrode 1.46 0.91 2.37 0.52
    EPrugh 1.21 2.12 0.47
    ESmith 3.51 4.42 0.98
    ECrowl 2.94 3.85 0.85
    EMolkov 1.22 2.13 0.47
    气瓶B
    (6.8L-30MPa)
    氮气 49.3 0.11 EBrode 1.55 0 1.55 0.34
    EPrugh 1.28 1.28 0.28
    ESmith 3.73 3.73 0.83
    ECrowl 3.13 3.13 0.69
    EMolkov 1.46 1.46 0.32
    气瓶C[19]
    (165L-35MPa)
    氢气 44.0 3.89 EBrode 33.43 23.74 57.17 12.65
    EPrugh 27.41 51.15 11.32
    ESmith 79.37 103.11 22.81
    ECrowl 66.33 90.07 19.93
    EMolkov 27.37 51.11 11.31
    文献[19] 21.32 24.04 45.36 10.04
    下载: 导出CSV
  • [1] GORDON J A, BALTA-OZKAN N, NABAVI S A. Beyond the triangle of renewable energy acceptance: the five dimensions of domestic hydrogen acceptance [J]. Applied Energy, 2022, 324: 119715. DOI: 10.1016/j.apenergy.2022.119715.
    [2] LI B, HAN B, LI Q, et al. Study on hazards from high-pressure on-board type III hydrogen tank in fire scenario: consequences and response behaviours [J]. Int J Hydrogen Energy, 2022, 47(4): 2759–2779. DOI: 10.1016/j.ijhydene.2021.10.205.
    [3] 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考 [J]. 压力容器, 2020, 37(6): 39–47. DOI: 10.3969/i.issn.1001-4837.2020.06.007.

    ZHENG J Y, HU J, HAN W L, et al. Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China [J]. Pressure Vessel Technology, 2020, 37(6): 39–47. DOI: 10.3969/i.issn.1001-4837.2020.06.007.
    [4] 邹林志, 李贝, 韩冰, 等. 氢燃料电池车紧急泄放射流火辐射风险分析 [J]. 清华大学学报(自然科学版), 2025: 1–8. DOI: 10.16511/j.cnki.qhdxxb.2025.27.001.

    ZOU L Z, LI B, HAN B, et al. Risk prediction of thermal radiation from jet fire of on board hydrogen storage tanks [J]. Journal of Tsinghua University (Science and Technology), 2025: 1–8. DOI: 10.16511/j.cnki.qhdxxb.2025.27.001.
    [5] 曹湘洪, 魏志强. 氢能利用安全技术研究与标准体系建设思考 [J]. 中国工程科学, 2020, 22(5): 144–151. DOI: 10.15302/J-SSCAE-2020.05.018.

    CAO X H, WEI Z Q. Technologies for the safe use of hydrogen and construction of the safety standards system [J]. Strategic Study of CAE, 2020, 22(5): 144–151. DOI: 10.15302/J-SSCAE-2020.05.018.
    [6] ZALOSH R. Blast waves and fireballs generated by hydrogen fuel tank rupture during fire exposure [C]//Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Wellesley College, US, 2007: 23–27.
    [7] HUPP N, STAHL U, KUNZE K, et al. Influence of fire intensity, fire impingement area and internal pressure on the fire resistance of composite pressure vessels for the storage of hydrogen in automobile applications [J]. Fire Safety Journal, 2019, 104: 1–7. DOI: 10.1016/j.firesaf.2018.12.004.
    [8] TAMURA Y, YAMAZAKI K, MAEDA K, et al. The residual strength of automotive hydrogen cylinders after exposure to flames [J]. International Journal of Hydrogen Energy, 2019, 44(17): 8759–8766. DOI: 10.1016/j.ijhydene.2018.12.055.
    [9] KUDRIAKOV S, STUDER E, BERNARD-MICHEL G, et al. Full-scale tunnel experiments: blast wave and fireball evolution following hydrogen tank rupture [J]. International Journal of Hydrogen Energy, 2022, 47(43): 18911–18933. DOI: 10.1016/j.ijhydene.2022.04.037.
    [10] MONTIEL H, VÍLCHEZ J A, CASAL J, et al. Mathematical modelling of accidental gas releases [J]. Journal of Hazardous Materials, 1998, 59(2-3): 211–233. DOI: 10.1016/S0304-3894(97)00149-0.
    [11] 李桐, 陈明, 叶志伟, 等. 不同耦合介质爆破爆炸能量传递效率研究 [J]. 爆炸与冲击, 2021, 41(6): 062201. DOI: 10.11883/bzycj-2020-0381.

    LI T, CHEN M, YE Z W, et al. Study on the energy transfer efficiency of explosive blasting with different coupling medium [J]. Explosion and Shock Waves, 2021, 41(6): 062201. DOI: 10.11883/bzycj-2020-0381.
    [12] WANG X Y, LI B, HAN B, et al. Explosion of high pressure hydrogen tank in fire: mechanism, criterion, and consequence assessment [J]. Journal of Energy Storage, 2023, 72: 108455. DOI: 10.1016/j.est.2023.108455.
    [13] MOLKOV V V, CIRRONE D M C, SHENTSOV V V, et al. Dynamics of blast wave and fireball after hydrogen tank rupture in a fire in the open atmosphere [J]. International Journal of Hydrogen Energy, 2021, 46(5): 4644–4665. DOI: 10.1016/j.ijhydene.2020.10.211.
    [14] CIRRONE D, MAKAROV D, MOLKOV V. Rethinking “BLEVE explosion” after liquid hydrogen storage tank rupture in a fire [J]. International Journal of Hydrogen Energy, 2023, 48(23): 8716–8730. DOI: 10.1016/j.ijhydene.2022.09.114.
    [15] 瞿飞. 氢燃料电池汽车灭火救援的对策研究 [J]. 中国消防, 2024(5): 60–63. DOI: 10.3969/j.issn.1672-9668.2019.02.042.

    QU F. Research on countermeasures for fire fighting and rescue of hydrogen fuel cell vehicle [J]. China Fire, 2024(5): 60–63. DOI: 10.3969/j.issn.1672-9668.2019.02.042.
    [16] 李贝, 王雪莹, 金鑫, 等. 火灾场景下碳纤维复合高压储氢装置热损伤特征研究 [J]. 太阳能学报, 2022, 43(6): 398–404. DOI: 10.19912/j.0254-0096.tynxb.2022-0421.

    LI B, WANG X Y, JIN X, et al. Study on thermal damage properties of carbon fiber composite high-pressure hydrogen tank under fire scenarios [J]. Acta Energiae Solaris Sinica, 2022, 43(6): 398–404. DOI: 10.19912/j.0254-0096.tynxb.2022-0421.
    [17] MOLKOV V, KASHKAROV S. Blast wave from a high-pressure gas tank rupture in a fire: Stand-alone and under-vehicle hydrogen tanks [J]. International Journal of Hydrogen Energy, 2015, 40(36): 12581–12603. DOI: 10.1016/j.ijhydene.2015.07.001.
    [18] ZHAO X L, CHEN C K, SHI C L, et al. A three-dimensional simulation of the effects of obstacle blockage ratio on the explosion wave in a tunnel [J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(4): 3245–3256. DOI: 10.1007/s10973-020-09777-7.
    [19] SHEN C C, MA L, HUANG G, et al. Consequence assessment of high-pressure hydrogen storage tank rupture during fire test [J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 223–231. DOI: 10.1016/j.jlp.2018.06.016.
    [20] BAKER W E, COX P A, WESTINE P S, et al. Explosion hazards and evaluation [M]. Amsterdam: Elsevier, 1983.
    [21] 曹涛, 孙浩, 周游, 等. 近地爆炸冲击波传播特性数值模拟与应用 [J]. 兵器装备工程学报, 2020, 41(12): 187–191. DOI: 10.11809/bqzbgcxb2020.12.035.

    CAO T, SUN H, ZHOU Y, et al. Numerical simulation and application of propagation characteristics of shock wave near ground explosion [J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 187–191. DOI: 10.11809/bqzbgcxb2020.12.035.
    [22] KASHKAROV S, LI Z Y, MOLKOV V. Blast wave from a hydrogen tank rupture in a fire in the open: hazard distance nomograms [J]. International Journal of Hydrogen Energy, 2020, 45(3): 2429–2446. DOI: 10.1016/j.ijhydene.2019.11.084.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  21
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-06-23
  • 网络出版日期:  2025-06-24

目录

    /

    返回文章
    返回