Experimental study on the impact resistance of ultra-high- strength spherical structures
-
摘要: 为研究高强材料与异形结构联合防护下工程的抗侵彻能力,设计了一种超高强球面结构加固靶体,利用
$\varnothing $ 125 mm火炮开展了系列400 m/s冲击速度下的侵彻试验,得到了弹体破坏形态和靶体侵彻深度等试验数据。结合半无限厚混凝土靶体的抗侵彻试验进行对比分析,探讨了材料高强力学性能以及球状偏航结构等因素对弹体偏转破碎、侵彻能力的影响。结果表明:在400 m/s的侵彻速度下,设计的超高强球面结构的无量纲侵彻深度为0.11,弹体偏转角为呈83°,质量损失率达23.66%,结构抗侵彻能力为C40混凝土的9倍,防护能力较普通混凝土有显著提升。超高强球面结构的非对称撞击力促使来袭弹发生偏转破碎,使弹体头部产生严重侵蚀,并在侵彻过程中产生跳弹、二次着靶以及折断等行为,可有效阻挡弹体侵入结构内部,极大削弱来袭弹体在防护结构中的侵爆作用。Abstract: To explore the anti-penetration abilities of irregular structures made of high-strength alloy steel, a target enhanced with ultra-high-strength spherical structures (UHS-SS) was manufactured in this work. The UHS-SS is fabricated from ultra-high-strength steel (UHSS) and mechanically anchored to the target via threaded high-tensile rods, ensuring structural integrity under projectile penetration loading. A series of penetration tests at an impact velocity of 400 m/s was performed using a 125 mm diameter cannon. The yaw-induced projectile deflection was recorded at5000 s−1, and the failure mode and penetration depth of the projectile were obtained. Through a comparative analysis of anti-penetration experimental results between semi-infinite concrete targets and UHS-SS-reinforced targets, the influences of ultra-high mechanical performances and the spherical yaw-inducing structure on the deflection and fragmentation of the projectile were disclosed. The test results reveal that at a penetration velocity of 400 m/s, the dimensionless penetration depth of the UHS-SS target is 0.11, and the penetration resistance of the UHS-SS target is about 9 times that of C40 concrete. The anti-penetration performance of UHS-SS is significantly enhanced in comparison to that of the ordinary concrete target. Furthermore, as the projectile penetrates the UHS-SS target, the resultant force on the projectile is in a different direction from that of the projectile velocity, which can deflect and shatter the projectile. The behavior of ricocheting off the surface, deflection-induced secondary impact, and fragmentation of the projectile occurred during the anti-penetration test of the UHS-SS target, and the maximal deflection angle was 83º during the experiment, preventing the projectile from penetrating the interior of the protective structure. The UHS-SS target has a severe erosion effect on the projectile at a lower speed of 400m/s, which resulted in a mass loss rate of 23.66% in the experiment. Therefore, the risk of a ground-penetrating weapon penetrating the protective works and detonating is significantly reduced.-
Key words:
- ultra-high strength steel /
- irregular structure /
- yaw /
- penetration test /
- spherical structure
-
表 1 弹体材料(35CrMnSiA)的力学参数
Table 1. Mechanical parameters of projectile material 35CrMnSiA
密度/(kg·m−3) 洛氏硬度 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 屈服强度/MPa 断裂韧性/(MPa∙m1/2) 冲击功/J 7850 HRC45 1630 11 45 1290 102 72 表 2 UHS-SS材料(30CrMnSiNi2A)的力学参数[27]
Table 2. Mechanical parameters of UHS-SS material 30CrMnSiNi2A
密度/(kg·m−3) 洛氏硬度 抗拉强度/MPa 断后伸长率/% 断面收缩率/% 屈服强度/MPa 硬化系数/MPa 硬化指数 应变率灵敏系数 7850 HRC45 1400 12 58 1270 810 0.48 0.04 表 3 抗侵彻能力对比
Table 3. Comparison of penetration resistance between UHS-SS and C40
加固类型 命中速度/(m·s−1) 开裂情况 开坑深度/cm 开坑面积/m2 偏转角/(°) 弹体质量损失率/% 弹体损伤情况 UHS-SS 403 4条裂缝 0 0 83 23.66 侵蚀严重,折断 C40 405 10条裂缝 72 1.22 0 2.03 定心环丢失,弹体完好 -
[1] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F. [2] 邓勇军, 陈小伟, 钟卫洲, 等. 弹体正侵彻钢筋混凝土靶的试验及数值模拟研究 [J]. 爆炸与冲击, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001.DENG Y J, CHEN X W, ZHONG W Z, et al. Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target [J]. Explosion and Shock Waves, 2020, 40(2): 023101. DOI: 10.11883/bzycj-2019-0001. [3] 纪冲, 龙源, 万文乾, 等. 钢纤维混凝土抗侵彻与贯穿特性的实验研究 [J]. 爆炸与冲击, 2008, 28(2): 178–185. DOI: 10.11883/1001-1455(2008)02-0178-08.JI C, LONG Y, WAN W Q, et al. On anti-penetration and anti-perforation characteristics of high-strength steel fiber-reinforced concrete [J]. Explosion and Shock Waves, 2008, 28(2): 178–185. DOI: 10.11883/1001-1455(2008)02-0178-08. [4] HTET P, CHEN W S, HAO H, et al. Hybrid fibre reinforced recycled aggregate concrete: dynamic mechanical properties and durability [J]. Construction and Building Materials, 2024, 415: 135044. DOI: 10.1016/j.conbuildmat.2024.135044. [5] 刘瑞朝, 吴飚, 张晓忠, 等. 高强高含量钢纤维混凝土抗侵彻性能试验研究 [J]. 爆炸与冲击, 2002, 22(4): 368–372. DOI: 10.11883/1001-1455(2002)04-0368-5.LIU R C, WU B, ZHANG X Z, et al. Tests on resisting projectiles penetration of high strength volume steel fiber concrete [J]. Explosion and Shock Waves, 2002, 22(4): 368–372. DOI: 10.11883/1001-1455(2002)04-0368-5. [6] 葛涛, 潘越峰, 谭可可, 等. 活性粉末混凝土抗冲击性能研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.GE T, PAN Y F, TAN K K, et al. Study on resistance of reactive powder concrete to impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148. [7] ROHANI B. Penetration of kinetic energy projectiles into rock-bubble /boulder overlays [C]. //Proceedings of the 3rd International Symposium on Interaction of Nonnuclear Munitions with Structures. Mannheim: Federal Minister of Defense, 1987: 863. [8] 陈万祥, 郭志昆, 吴昊, 等. 表面异形遮弹层的诱偏机理与试验 [J]. 弹道学报, 2011, 23(4): 66–69,74.CHEN W X, GUO Z K, WU H, et al. Yaw-inducing mechanism and experimental investigation of shielding layer with irregular barrier on surface [J]. Journal of Ballistics, 2011, 23(4): 66–69,74. [9] 郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428.GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates [J]. Explosion and Shock Waves, 2020, 40(10): 103301. DOI: 10.11883/bzycj-2019-0428. [10] 唐德高, 贺虎成, 陈向欣, 等. 刚玉块石混凝土抗弹丸侵彻效应试验研究 [J]. 振动与冲击, 2005, 24(6): 37–39,135-136. DOI: 10.3969/j.issn.1000-3835.2005.06.011.TANG D G, HE H C, CHEN X X, et al. Experimental study on corundum-rubble concrete against projectile [J]. Journal of Vibration and Shock, 2005, 24(6): 37–39,135-136. DOI: 10.3969/j.issn.1000-3835.2005.06.011. [11] 姚焕忠, 韩国建, 程国亮. 块石高强固结体抗侵彻性能试验研究 [J]. 防护工程, 2013, 35(3): 17–21.YAO H Z, HAN G J, CHENG G L. Experimental research and analysis on anti-penetration performance of nubby stone concretion [J]. Protective Engineering, 2013, 35(3): 17–21. [12] 贺虎成, 唐德高, 陈向欣, 等. 刚玉碎石混凝土抗弹丸侵彻效应研究与分析 [J]. 爆炸与冲击, 2004, 24(6): 514–518. DOI: 10.11883/1001-1455(2004)06-0514-5.HE H C, TANG D G, CHEN X X, et al. Experimental study and analyse on penetration effect for crushed corundum concrete against projectile [J]. Explosion and Shock Waves, 2004, 24(6): 514–518. DOI: 10.11883/1001-1455(2004)06-0514-5. [13] 吴昊, 张瑜, 程月华, 等. 典型战斗部侵彻爆炸下块石混凝土的遮弹层设计 [J]. 爆炸与冲击, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136.WU H, ZHANG Y, CHENG Y H, et al. Design of rock-rubble concrete shield against the combination of penetration and explosion of warheads [J]. Explosion and Shock Waves, 2025, 45(4): 043302. DOI: 10.11883/bzycj-2024-0136. [14] CHENG Y H, WU H, JIANG P F, et al. Ballistic resistance of high-strength armor steel against ogive-nosed projectile impact [J]. Thin-Walled Structures, 2023, 183: 110350. DOI: 10.1016/j.tws.2022.110350. [15] MANGANELLO S J, ABBOTT K H. Metallurgical factors affecting the ballistic behavior of steel targets [J]. Journal of Materials, 1972, 7(2): 231–239. [16] DIKSHIT S N, KUTUMBARAO V V, SUNDARARAJAN G. The influence of plate hardness on the ballistic penetration of thick steel plates [J]. International Journal of Impact Engineering, 1995, 16(2): 293–320. DOI: 10.1016/0734-743X(94)00041-T. [17] ÜBEYLI M, YILDIRIM R O, ÖGEL B. On the comparison of the ballistic performance of steel and laminated composite armors [J]. Materials & Design, 2007, 28(4): 1257–1262. DOI: 10.1016/j.matdes.2005.12.005. [18] JENA P K, RAMANJENEYULU K, SIVA KUMAR K, et al. Ballistic studies on layered structures [J]. Materials & Design, 2009, 30(6): 1922–1929. DOI: 10.1016/j.matdes.2008.09.008. [19] 邓云飞, 孟 凡柱, 李剑锋, 等. Q235钢板对半球形头弹抗侵彻特性 [J]. 爆炸与冲击, 2015, 35(3): 386–392. DOI: 10.11883/1001-1455(2015)03-0386-07.DENG Y F, MENG F Z, LI J F, et al. The ballistic performance of q235 metal plates subjected to impact by hemispherically-nosed projectiles [J]. Explosion and Shock Waves, 2015, 35(3): 386–392. DOI: 10.11883/1001-1455(2015)03-0386-07. [20] ROHANI B. Shielding methodology for conventional kinetic energy weapon, SL-87-8 [R], U. S. Army engineer waterways experiment station, Vicksburg, MS , 1987. [21] BLESS S J, SATAPATHY S, NORMANDIA M J. Transverse loads on a yawed projectile [J]. International Journal of Impact Engineering, 1999, 23: 77–86. DOI: 10.1016/S0734-743X(99)00064-0. [22] 周布奎, 陈向欣, 唐德高, 等. 单层紧密排列刚玉球砼侵彻特性试验研究 [J]. 爆炸与冲击, 2003, 23(2): 173–177. DOI: 10.11883/1001-1455(2003)02-0173-5.ZHOU B K, CHEN X X, TANG D G, et al. An experimental study on anti-penetration characteristics of concretes shielded with single layer of tightly arrayed corundum spheres [J]. Explosion and Shock Waves, 2003, 23(2): 173–177. DOI: 10.11883/1001-1455(2003)02-0173-5. [23] 赵宏远, 武海军, 董恒, 等. 蜂窝钢管混凝土抗侵彻性能实验研究 [J]. 爆炸与冲击, 2023, 43(5): 053101. DOI: 10.11883/bzycj-2022-0050.ZHAO H Y, WU H J, DONG H, et al. An experimental study of anti-penetration performance of concrete-filled steel tube with honeycomb structure [J]. Explosion and Shock Waves, 2023, 43(5): 053101. DOI: 10.11883/bzycj-2022-0050. [24] 陆渝生, 王明洋, 严少华, 等. 夹钢球钢纤维砼的抗侵彻试验研究 [J]. 爆炸与冲击, 1999, 19(1): 60–65. DOI: 10.11883/1001-1455(1999)01-0060-6.LU Y S, WANG M Y, YAN S H, et al. Studies on anti-penetration of steel-fiber RC with steel inclusions by test [J]. Explosion and Shock Waves, 1999, 19(1): 60–65. DOI: 10.11883/1001-1455(1999)01-0060-6. [25] 陈万祥, 郭志昆. 活性粉末混凝土基表面异形遮弹层的抗侵彻特性 [J]. 爆炸与冲击, 2010, 30(1): 51–57. DOI: 10.11883/1001-1455(2010)01-0051-07.CHEN W X, GUO Z K. Anti-penetration characteristics of RPC shelter plate with irregular barriers on surface [J]. Explosion and Shock Waves, 2010, 30(1): 51–57. DOI: 10.11883/1001-1455(2010)01-0051-07. [26] 任辉启, 穆朝民, 刘瑞朝, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016.REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016. [27] LIU C K, WU H X, GAO F, et al. Damage characteristics and dynamic response of steel–concrete-steel composite targets penetrated by a rigid projectile [J]. Engineering Structures, 2023, 282: 115773. DOI: 10.1016/j.engstruct.2023.115773. [28] 陈万祥, 郭志昆, 钱七虎. 基于接触理论的弹体偏航机理 [J]. 解放军理工大学学报(自然科学版), 2006, 7(5): 458–466. DOI: 10.3969/j.issn.1009-3443.2006.05.012.CHEN W X, GUO Z K, QIAN Q H. Yawing mechanism of projectiles based on contact theory [J]. Journal of PLA University of Science and Technology, 2006, 7(5): 458–466. DOI: 10.3969/j.issn.1009-3443.2006.05.012. [29] 刘瑞朝, 何满潮, 任辉启, 等. 射弹侵彻中的攻角效应 [J]. 北京理工大学学报, 2003, 23(1): 26–29. DOI: 10.3969/j.issn.1001-0645.2003.01.007.LIU R C, HE M C, REN H Q, et al. Effect of attack angle on a projectile’s penetration [J]. Transactions of Beijing Institute of Technology, 2003, 23(1): 26–29. DOI: 10.3969/j.issn.1001-0645.2003.01.007. [30] 周健南, 金丰年, 王斌. 别列赞公式中弹体参数取值的探讨 [J]. 弹道学报, 2008, 20(2): 20–23. -