Optimization of structural design and damage efficacy for CoCrFeNiCux high-entropy alloy liners in explosively formed projectiles
-
摘要: 探究了CoCrFeNiCux高熵合金作为药型罩材料在爆炸成型弹丸领域中的应用潜力,旨在通过优化药型罩结构提升爆炸成形弹丸的成形性能和毁伤效能。通过准静态和动态拉伸试验研究了CoCrFeNiCux高熵合金的力学性能,并拟合了Johnson-Cook本构模型参数。结果表明,2种高熵合金(x=0, 1)均表现出优异的塑性、延展性及正应变率敏感性,动态屈服强度随应变率升高显著提升。基于AUTODYN软件对比分析了紫铜与高熵合金药型罩的成形规律,发现高熵合金因强度高导致初始结构成形困难,弹丸尾部闭合不良。通过对药型罩进行均匀变壁厚优化,使形成的爆炸成型弹丸长径比分别提升至2.0(x=0)和2.5(x=1),速度分别达到
2260 和2357 m/s。侵彻性能验证表明,优化后的弹丸对100 mm厚4340 钢靶的侵彻深度分别为37.8和41.5 mm,对1000 mm厚C35混凝土靶的侵彻深度分别达287.6和303.7 mm,扩孔直径均超过装药口径的260%,显示出优异的侵彻毁伤能力。研究结果表明,通过优化CoCrFeNiCux高熵合金药型罩结构可显著改善爆炸成型弹丸的成形质量与侵彻性能,为高效毁伤战斗部设计提供了理论依据与新思路。Abstract: High-entropy alloys (HEAs), as a novel class of high-performance metallic materials, have demonstrated considerable potential in the fields of damage and penetration mechanics. This study investigates the application of CoCrFeNiCux HEAs as liner materials for explosively formed projectiles (EFPs), with the objective of enhancing EFP formation quality and damage efficacy through structural optimization of the liner. Quasi-static and dynamic tensile tests were conducted to characterize the mechanical properties of the HEAs with different copper contents (x=0 and x=1). The experimental data were used to fit parameters for the Johnson-Cook (J-C) constitutive model. The results indicate that both HEA compositions exhibit outstanding plasticity, ductility, and positive strain-rate sensitivity, with dynamic yield strength increasing significantly under high strain-rate loading. Numerical simulations were performed using the nonlinear finite element software AUTODYN to compare the EFP formation processes between conventional copper liners and the proposed HEA liners. The simulations revealed that the superior strength of the HEAs impeded the complete closure of the projectile tail when using a conventional uniform wall thickness liner geometry. To address this issue, a uniform variable wall thickness design was implemented for the HEA liners. This optimization successfully improved the formed EFPs, resulting in length-to-diameter ratios of 2.0 for x=0 and 2.5 for x=1, with velocities reaching2260 m/s and2357 m/s, respectively. The penetration performance of the optimized HEA EFPs was validated against two target types. The projectiles achieved penetration depths of 37.8 mm (x=0) and 41.5 mm (x=1) into 100-mm-thick4340 steel targets, and 287.6 mm and 303.7 mm into1000 -mm-thick C35 concrete targets. The crater diameters exceeded 260% of the charge caliber, confirming excellent penetration and damage capabilities. This work demonstrates that structural optimization of CoCrFeNiCux HEA liners significantly enhances EFP formation quality and penetration performance, providing a theoretical foundation and a novel strategy for the design of high-efficiency damage warheads. -
表 1 两种材料在不同加载应变率下的应力
Table 1. Stresses corresponding to given strains at different strain rates
$ \dot \varepsilon $/s−1 σ/MPa x=0 x=1 0.01 204.7 249.5 1905 388.7 1965 443.5 3030 545.7 3095 463.3 表 2 两种高熵合金的材料参数
Table 2. Material parameters of two HEAs
x A/MPa B/MPa n C mJ-C 0 167 844.2 0.97 0.07 0.98 1 218 462.1 0.93 0.05 0.85 表 3 三种材料药型罩装药结构参数
Table 3. Structural parameters for shaped charge liners of three types of materials
罩材 D/mm L/mm h/mm d/mm δ/mm r1/mm r2/mm 紫铜 60.0 60.3 11.0 58.0 2.0 39.6 37.6 CoCrFeNi 60.0 60.3 11.0 58.0 2.2 39.6 37.4 CoCrFeNiCu 60.0 60.3 11.0 58.0 2.1 39.6 37.5 ρ/(g·cm−3) A/MPa B/MPa n C mJ-C γ S c0/(km·s−1) 8.96 90 292 0.31 0.025 1.09 2.02 1.489 3.94 ρ/(g·cm−3) D/(m·s−1) pCJ/GPa A/GPa B/GPa R1 R2 ω v 1.69 8390 34 581.4 6.8 4.1 1.1 0.35 1.0 表 7 四组优化模型装药结构参数
Table 7. Structural parameters of four optimized charge models
δ D/mm L/mm h/mm d/mm Φ/mm Φ`/mm r1/mm r2/mm 0.2 60.0 60.3 27.8 58.0 2.2 0.44 30.0 30.0 0.3 60.0 60.3 27.8 58.0 2.2 0.66 30.0 30.0 0.4 60.0 60.3 27.8 58.0 2.2 0.88 30.0 30.0 0.5 60.0 60.3 27.8 58.0 2.2 1.10 30.0 30.0 表 8 优选药型罩结构参数
Table 8. Optimized structural parameters of the shaped charge liners
罩材 D/mm L/mm d/mm r1/mm r2/mm Φ/mm Φ'/mm δ CoCrFeNi 60.0 60.3 58.0 30 30 2.2 0.66 0.3 CoCrFeNiCu 60.0 60.3 58.0 30 30 2.1 0.84 0.4 ρ/(g·cm−3) A/MPa B/MPa n C mJ-C γ S c0/(m·s−1) D1 D2 D3 D4 D5 7.85 792 510 0.26 0.014 1.03 2.17 1.49 4500 0.05 3.44 -2.12 0.002 0.61 -
[1] NING J G, CHEN Q D, LI J Q, et al. Improved shaped charge formation model based on the effective charge [J]. International Journal of Mechanical Sciences, 2025, 295: 110223. DOI: 10.1016/j.ijmecsci.2025.110223. [2] 李干, 陈小伟. 聚能射流侵彻径向扩孔的可压缩模型 [J]. 爆炸与冲击, 2022, 42(7): 073301. DOI: 10.11883/bzycj-2021-0466.LI G, CHEN X W. A compressible model of radial crater growth by shaped-charge jet penetration [J]. Explosion and Shock Waves, 2022, 42(7): 073301. DOI: 10.11883/bzycj-2021-0466. [3] HAO L K, GU W B, ZHANG Y D, et al. Damage of a large-scale reinforced concrete wall caused by an explosively formed projectile (EFP) [J]. Defence Technology, 2023, 28: 280–297. DOI: 10.1016/j.dt.2022.11.003. [4] 李珍珍, 杨永亮, 王雅君, 等. 大长径比尾翼爆炸成型弹丸飞行稳定性分析 [J]. 振动与冲击, 2025, 44(4): 184–197,216. DOI: 10.13465/j.cnki.jvs.2025.04.020.LI Z Z, YANG Y L, WANG Y J, et al. Flight stability analysis of large aspect ratio explosively formed projectiles with fins [J]. Journal of Vibration and Shock, 2025, 44(4): 184–197,216. DOI: 10.13465/j.cnki.jvs.2025.04.020. [5] 郑斌, 尚勇, 程丽丽, 等. EFP战斗部穿甲威力对末敏弹作战效能影响分析 [J]. 弹箭与制导学报, 2022, 42(4): 57–61. DOI: 10.15892/j.cnki.djzdxb.2022.04.011.ZHENG B, SHANG Y, CHENG L L, et al. Impact analysis of armor piercing power of EFP on operational efficiency of terminal sensitive projectile [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(4): 57–61. DOI: 10.15892/j.cnki.djzdxb.2022.04.011. [6] MA T B, LIU J, WANG Q. Influence of shaped charge structure parameters on the formation of linear explosively formed projectiles [J]. Defence Technology, 2022, 18(10): 1863–1874. DOI: 10.1016/j.dt.2021.08.005. [7] 陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究 [J]. 爆炸与冲击, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.CHEN J L, LI S T, CHEN Y Q. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation [J]. Explosion and Shock Waves, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324. [8] 宋福琛, 郭辉, 陈玉. UHMWPE薄板抗轻武器杀伤元斜侵彻研究 [J]. 爆炸与冲击, 2024, 44(11): 113301. DOI: 10.11883/bzycj-2023-0208.SONG F C, GUO H, CHEN Y. Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo [J]. Explosion and Shock Waves, 2024, 44(11): 113301. DOI: 10.11883/bzycj-2023-0208. [9] 邢逸凡, 郑文凯, 曹玉武, 等. 高熵合金在高效毁伤领域的研究及应用进展 [J]. 火炮发射与控制学报, 2025, 46(4): 115–121. DOI: 10.19323/j.issn.1673-6524.202412005.XING Y F, ZHENG W K, CAO Y W, et al. Research and application progress of high-entropy alloys in the field of high-efficiency damage [J]. Journal of Gun Launch and Control, 2025, 46(4): 115–121. DOI: 10.19323/j.issn.1673-6524.202412005. [10] 刘扬, 范怡静, 沈伟建, 等. 药型罩材料技术研究进展 [J]. 材料导报, 2025, 39(7): 145–153. DOI: 10.11896/cldb.24040081.LIU Y, FAN Y J, SHEN W J, et al. Progress in the materials for shaped charge liners [J]. Materials Reports, 2025, 39(7): 145–153. DOI: 10.11896/cldb.24040081. [11] YANG Y S, WANG C T, MENG Y P, et al. Recent progress on impact induced reaction mechanism of reactive alloys [J]. Defence Technology, 2024, 37: 69–95. DOI: 10.1016/j.dt.2023.11.002. [12] 何勇, 杨岩松, 何源, 等. 反应合金材料冲击释能机理研究进展 [J]. 科学通报, 2024, 69(9): 1211-1222. DOI: 10.1360/TB-2023-0582.HE Y, YANG Y S, HE Y, et al. Recent progress in impact-induced reaction mechanisms of reactive alloys [J] Chinese Science Bulletin, 2024, 69(9): 1211-1222. DOI: 10.1360/TB-2023-0582. [13] 马胜国, 王志华. CoCrFeNiAlx系高熵合金的动态力学性能和本构关系 [J]. 爆炸与冲击, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.MA S G, WANG Z H. Dynamic mechanical properties and constitutive relations of CoCrFeNiAlx high entropy alloys [J]. Explosive and Shock Waves, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293. [14] 陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414. [15] 李天昕, 王书道, 卢一平, 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.LI T X, WANG S D, LU Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study of CAE, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016. [16] TSAI M H, YEH J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107–123. DOI: 10.1080/21663831.2014.912690. [17] LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546–550. DOI: 10.1038/s41586-018-0685-y. [18] TANG Y Q, LI D Y. Dynamic response of high-entropy alloys to ballistic impact [J]. Science Advances, 2022, 8(32): eabp9096. DOI: 10.1126/sciadv.abp9096. [19] SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material [J]. Nature, 2018, 554(7691): 224–228. DOI: 10.1038/nature25476. [20] PANDEY V, SEETHARAM R, CHELLADURAI H. A comprehensive review: discussed the effect of high-entropy alloys as reinforcement on metal matrix composite properties, fabrication techniques, and applications [J]. Journal of Alloys and Compounds, 2024, 1002: 175095. DOI: 10.1016/j.jallcom.2024.175095. [21] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448–511. DOI: 10.1016/j.actamat.2016.08.081. [22] 张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科学技术大学, 2017: 86-87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 86-87. DOI: 10.27052/d.cnki.gzjgu.2017.000221. [23] 侯先苇, 熊玮, 陈海华, 等. 两种典型高熵合金冲击释能及毁伤特性研究 [J]. 力学学报, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.HOU X W, XIONG W, CHEN H H, et al. Impact energy release and damage characteristics of two high-entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327. [24] 郭孜涵, 陈闯, 涂益良, 等. HfZrTiTaNb系高熵合金的冲击反应释能定量确定 [J]. 高压物理学报, 2024, 38(1): 014103. DOI: 10.11858/gywlxb.20230817.GUO Z H, CHEN C, TU Y L, et al. Quantitative determination of impact reaction energy release for HfZrTiTaNb based high-entropy alloys [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014103. DOI: 10.11858/gywlxb.20230817. [25] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274. [26] 刘承哲, 王海福, 张甲浩, 等. 轻质高熵合金聚能射流毁伤混凝土靶行为研究 [J]. 兵工学报, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642.LIU C Z, WANG H F, ZHANG J H, et al. Research on behavior of lightweight high-entropy alloy jet penetrating concrete targets [J]. Acta Armamentarii, 2024, 45(S1): 60–69. DOI: 10.12382/bgxb.2024.0642. [27] LI R X, DING J B, ZHAO Y Y, et al. Preliminary study on the dynamic deformation mechanism of CoCrFeNi high-entropy alloy and its application in the shaped charge liner [J]. Journal of Alloys and Compounds, 2024, 999: 175083. DOI: 10.1016/j.jallcom.2024.175083. [28] WANG X T, WANG B P, LIU X D, et al. Asynchronous deformation behavior of precipitation-hardened high-entropy alloys shaped charge liner under explosive loading [J]. Intermetallics, 2025, 176: 108555. DOI: 10.1016/j.intermet.2024.108555. [29] 李海峰, 门建兵, 金文, 等. Ta-Hf-Nb-Zr体系高熵合金J-C模型及应用试验 [J]. 爆炸与冲击, 2025, 45(3): 55-65. DOI: 10.11883/bzycj-2024-0069.LI H F, MEN J B, JIN W, et al. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test [J]. Explosion and Shock Waves, 2025, 45(3): 033103. DOI: 10.11883/bzycj-2024-0069. [30] SINGH S K, PARASHAR A. Shock resistance capability of multi-principal elemental alloys as a function of lattice distortion and grain size [J]. Journal of Applied Physics, 2022, 132(9): 095903. DOI: 10.1063/5.0106637. [31] CAO T Q, ZHANG Q, WANG L, et al. Dynamic deformation behaviors and mechanisms of CoCrFeNi high-entropy alloys [J]. Acta Materialia, 2023, 260: 119343. DOI: 10.1016/j.actamat.2023.119343. [32] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings 7th International Symposium on Ballistics. Hague, 1983: 541-548. [33] ROLLETT A, HUMPHREYS F J, ROHRER G S, et al. Recrystallization and related annealing phenomena [M]. 3rd ed. Amsterdam: Elsevier, 2017. DOI: 10.1016/B978-0-08-098235-9.00002-1. [34] ZHANG T W, MA S G, ZHAO D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226–246. DOI: 10.1016/j.ijplas.2019.08.013. [35] 李昌伟, 张勇. 铜含量对CoCrFeNi高熵合金组织结构和性能的影响 [J]. 精密成形工程, 2022, 14(12): 1–9. DOI: 10.3969/j.issn.1674-6457.2022.12.001.LI C W, ZHANG Y. Effects of copper addition on microstructure and properties of CoCrFeNi high entropy alloy [J]. Journal of Netshape Forming Engineering, 2022, 14(12): 1–9. DOI: 10.3969/j.issn.1674-6457.2022.12.001. [36] CARDOSO D, TEIXEIRA-DIAS F. Modelling the formation of explosively formed projectiles (EFP) [J]. International Journal of Impact Engineering, 2016, 93: 116–127. DOI: 10.1016/j.ijimpeng.2016.02.014. [37] LI R X, CHEN J L, WANG R Q, et al. Performance study of explosively formed projectile using CoCrFeNi high-entropy alloy as a liner [J]. Journal of Applied Physics, 2024, 136(14): 145901. DOI: 10.1063/5.0231905. [38] LI R X, WANG R Q, TIAN Q W, et al. An investigation on the jet formation and penetration characteristics of the CuCoCrFeNi high-entropy alloy liner [J]. AIP Advances, 2024, 14(5): 055017. DOI: 10.1063/5.0207709. [39] 刘迪, 顾云, 孙飞, 等. 基于聚能射流的岩石定向劈裂机制 [J]. 爆炸与冲击, 2023, 43(8): 083303. DOI: 10.11883/bzycj-2022-0496.LIU D, GU Y, SUN F, et al. Directional splitting mechanism of rock based on shaped charge jet [J]. Explosion and Shock Waves, 2023, 43(8): 083303. DOI: 10.11883/bzycj-2022-0496. [40] 王瑞琪, 孙焕, 任鑫鑫, 等. 带截体聚能装药正交优化设计 [J]. 兵器装备工程学报, 2022, 43(3): 229–234. DOI: 10.11809/bqzbgcxb2022.03.036.WANG R Q, SUN H, REN X X, et al. Orthogonal optimization design of shaped charge with truncated body [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 229–234. DOI: 10.11809/bqzbgcxb2022.03.036. [41] 黄超, 徐维铮, 曾繁, 等. 近水面空中爆炸冲击波的载荷特性 [J]. 爆炸与冲击, DOI: 10.11883/bzycj-2024-0457.HUANG C, XU W Z, ZENG F, et al. Research on shock wave load characteristics of near water surface blast [J/OL]. Explosion and Shock Waves, DOI: 10.11883/bzycj-2024-0457. [42] BIRKHOFF G, MACDOUGALL D P, PUGH E M, et al. Explosives with lined cavities [J]. Journal of Applied Physics, 1948, 19(6): 563–582. DOI: 10.1063/1.1698173. [43] 聂晓东, 吴祥云, 龙志林, 等. 弹体对超高性能混凝土侵彻深度的研究 [J]. 爆炸与冲击, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282.NIE X D, WU X Y, LONG Z L, et al. Research on penetration depth of projectiles into ultra-high performance concrete targets [J] Explosion and Shock Waves, 2024, 44(2): 023302. DOI: 10.11883/bzycj-2022-0282. [44] 唐奎, 王金相, 陈兴旺, 等. 夹心弹对半无限钢靶的侵彻特性 [J]. 爆炸与冲击, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323.TANG K, WANG J X, CHEN X W, et al. Penetration characteristics of jacketed rods into semi-infinite steel targets [J] Explosion and Shock Waves, 2020, 40(5): 053302. DOI: 10.11883/bzycj-2019-0323. [45] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010. -


下载: