摘要:
为有效控制受限空间氢-空气爆炸强度,并揭示含甲基膦酸二甲酯 (O=P(CH3)(OCH3)2) 的微米级水雾的抑爆机理,通过定容燃烧弹试验平台及Chemkin-Pro程序,开展试验研究与化学动力学分析。结果表明:含O=P(CH3)(OCH3)2的细水雾可导致火焰锋面细胞状结构增多促使火焰失稳传播;当Φ=0.8、1.0和1.5时,含O=P(CH3)(OCH3)2的细水雾有效衰减了平均火焰速度(衰减率:24.2%~47.2%)并阻止了郁金香火焰形成,取而代之的是波纹状火焰。含O=P(CH3)(OCH3)2的细水雾通过降低层流燃烧速度抑制升压速率,另一方面增强火焰的失稳特性增大升压速率,最终抑制效果(衰减率:41.0%~65.8%)取决于上述两种作用的耦合效应。含的O=P(CH3)(OCH3)2的细水雾通过降低H∙、O∙和OH∙的浓度实现爆炸的有效抑制,其中H∙、O∙和OH∙浓度衰减80%以上。细水雾基于火焰前沿冷却效应和物理稀释效应实现爆炸抑制,O=P(CH3)(OCH3)2基于分解后产生的HOPO∙、HOPO2∙、HPO2∙、PO(OH)2∙和PO(H)(OH)∙捕捉H∙和OH∙生成H2和H2O等稳定化合物实现氢-空气爆炸的化学动力学抑制。
Abstract:
To effectively control the explosion intensity of hydrogen–air mixtures in confined spaces and elucidate the suppression mechanism of micron-sized water mist containing dimethyl methylphosphonate (DMMP, O=P(CH3)(OCH3)2), this study combines constant-volume combustion bomb experiments with chemical kinetic simulations using Chemkin-Pro. Results indicate that water mist containing O=P(CH₃)(OCH₃)₂ promotes the formation of cellular structures on the flame front, thereby inducing flame instability. At equivalence ratios (Φ) of 0.8, 1.0, and 1.5, the O=P(CH3)(OCH3)2-laden water mist effectively reduces the average flame speed (with reductions ranging from 24.2% to 47.2%) and suppresses the formation of tulip flames, which are replaced by wrinkled flame structures. The mist suppresses the pressure rise rate by reducing the laminar flame speed, but simultaneously enhances flame instability, which tends to increase the pressure rise rate. The overall suppression performance (with pressure reduction ranging from 41.0% to 65.8%) results from the coupling of these two opposing effects. Additionally, the O=P(CH3)(OCH3)2-laden mist achieves effective explosion suppression by reducing the concentrations of H∙, O∙, and OH∙ radicals, with reductions exceeding 80%. The physical suppression arises from pre-flame cooling and dilution effects of the water mist, while the chemical suppression is attributed to the decomposition of O=P(CH3)(OCH3)2 into phosphorus-containing radicals such as HOPO∙, HOPO2∙, HPO2∙, PO(OH)2∙, and PO(H)(OH)∙. These species scavenge reactive H∙ and OH∙ radicals, promoting the formation of stable products like H2 and H2O, thereby interrupting the chain reactions in hydrogen-air explosions.