| [1] |
GUO Q, LIU J, LIANG W K, et al. On the explosion characteristics of natural gas with hydrogen and inert gas additions [J]. Process Safety and Environmental Protection, 2023, 179: 700–713. DOI: 10.1016/j.psep.2023.09.056.
|
| [2] |
WEI R C, LAN J M, LIAN L P, et al. A bibliometric study on research trends in hydrogen safety [J]. Process Safety and Environmental Protection, 2022, 159: 1064–1081. DOI: 10.1016/j.psep.2022.01.078.
|
| [3] |
XIA Y C, ZHANG B, WANG B Q, et al. Study on flame evolution and kinetics mechanism of H2-Air mixture with C3H9O3P-H2O fog addition [J]. Fuel, 2025, 395: 135017. DOI: 10.1016/j.fuel.2025.135017.
|
| [4] |
ZHANG C, SHEN X B, WEN J X, et al. The behavior of methane/hydrogen/air premixed flame in a closed channel with inhibition [J]. Fuel, 2020, 265: 116810. DOI: 10.1016/j.fuel.2019.116810.
|
| [5] |
CAO X Y, WANG Z, WANG Z R, et al. Experimental research on the flame resistance characteristics of wire mesh for syngas explosion [J]. Process Safety and Environmental Protection, 2023, 175: 34–47. DOI: 10.1016/j.psep.2023.05.023.
|
| [6] |
QIU D Y, CHEN X F, HAO L J, et al. Partial suppression of acetaminophen dust explosion by synergistic multiphase inhibitors [J]. Process Safety and Environmental Protection, 2023, 172: 262–272. DOI: 10.1016/j.psep.2023.02.021.
|
| [7] |
CUI Y, LIU J H. Research progress of water mist fire extinguishing technology and its application in battery fires [J]. Process Safety and Environmental Protection, 2021, 149: 559–574. DOI: 10.1016/j.psep.2021.03.003.
|
| [8] |
CAO X Y, ZHOU Y Q, WANG Z R, et al. Experimental research on hydrogen/air explosion inhibition by the ultrafine water mist [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23898–23908. DOI: 10.1016/j.ijhydene.2022.05.165.
|
| [9] |
BOECK L R, KINK A, OEZDIN D, et al. Influence of water mist on flame acceleration, DDT and detonation in H2-air mixtures [J]. International Journal of Hydrogen Energy, 2015, 40(21): 6995–7004. DOI: 10.1016/j.ijhydene.2015.03.129.
|
| [10] |
XIA Y C, ZHANG J N, ZHANG B, et al. Localized water mist method enabling superior premixed hydrogen-methane-air deflagration mitigation in semi-confined space [J]. International Journal of Hydrogen Energy, 2024, 50: 1458–1469. DOI: 10.1016/j.ijhydene.2023.11.129.
|
| [11] |
WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235.
|
| [12] |
陈晓坤, 王君, 程方明. 氢气抑爆材料及其抑爆机理研究进展 [J]. 爆炸与冲击, 2024, 44(11): 111101. DOI: 10.11883/bzycj-2023-0418.CHEN X K, WANG J, CHENG F M. Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms [J]. Explosion and Shock Waves, 2024, 44(11): 111101. DOI: 10.11883/bzycj-2023-0418.
|
| [13] |
CAO X Y, REN J J, ZHOU Y H, et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive [J]. Journal of Hazardous Materials, 2015, 285: 311–318. DOI: 10.1016/j.jhazmat.2014.11.016.
|
| [14] |
裴蓓, 胡紫维, 韩谕良, 等. 含改性氯化合物对N2/细水雾抑制LPG爆炸影响研究 [J]. 爆炸与冲击, 2024, 44(11): 115401. DOI: 10.11883/bzycj-2023-0340.PEI B, HU Z W, HAN Y L, et al. Study on influence of modified chlorine-containing compounds on N2/water mist to suppress LPG explosion [J]. Explosion and Shock Waves, 2024, 44(11): 115401. DOI: 10.11883/bzycj-2023-0340.
|
| [15] |
YU M G, WAN S J, XU Y L, et al. Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 21–29. DOI: 10.1016/j.jngse.2015.12.040.
|
| [16] |
WANG F X, JIA J Z, TIAN X Y. Study on methane explosion suppression in diagonal pipe networks using a fine water mist containing KCl and an inert gas [J]. ACS Omega, 2022, 7(37): 32959–32969. DOI: 10.1021/acsomega.2c02212.
|
| [17] |
JOSEPH P, NICHOLS E, NOVOZHILOV V. A comparative study of the effects of chemical additives on the suppression efficiency of water mist [J]. Fire Safety Journal, 2013, 58: 221–225. DOI: 10.1016/j.firesaf.2013.03.003.
|
| [18] |
ZHANG T W, LIU H, HAN Z Y, et al. Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics [J]. Applied Thermal Engineering, 2017, 122: 429–438. DOI: 10.1016/j.applthermaleng.2017.05.053.
|
| [19] |
PEI B, LI S L, YANG S J, et al. Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives [J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104817. DOI: 10.1016/j.jlp.2022.104817.
|
| [20] |
SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder Technology, 2024, 432: 119166. DOI: 10.1016/j.powtec.2023.119166.
|
| [21] |
INGRAM J M, AVERILL A F, BATTERSBY P, et al. Suppression of hydrogen/oxygen/nitrogen explosions by fine water mist containing sodium hydroxide additive [J]. International Journal of Hydrogen Energy, 2013, 38(19): 8002–8010. DOI: 10.1016/j.ijhydene.2013.04.048.
|
| [22] |
VAN DER VEEN I, DE BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis [J]. Chemosphere, 2012, 88(10): 1119–1153. DOI: 10.1016/j.chemosphere.2012.03.067.
|
| [23] |
WANG Z R, XU H, LU Y W, et al. Experimental and theoretical study on the suppression effect of water mist containing dimethyl methylphosphonate (DMMP) on hydrogen jet flame [J]. Fuel, 2023, 331: 125813. DOI: 10.1016/j.fuel.2022.125813.
|
| [24] |
JIANG H P, BI M S, HUANG L, et al. Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions [J]. Energy, 2022, 239: 121987. DOI: 10.1016/j.energy.2021.121987.
|
| [25] |
National Fire Protection Association. Standard on water mist fire protection systems: NFPA 750 [S]. Quincy: National Fire Protection Association, 2019.
|
| [26] |
CONAIRE M Ó, CURRAN H J, SIMMIE J M, et al. A comprehensive modeling study of hydrogen oxidation [J]. International Journal of Chemical Kinetics, 2004, 36(11): 603–622. DOI: 10.1002/kin.20036.
|
| [27] |
JAYAWEERA T M, MELIUS C F, PITZ W J, et al. Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios [J]. Combustion and Flame, 2005, 140(1/2): 103–115. DOI: 10.1016/j.combustflame.2004.11.001.
|
| [28] |
OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion [J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004–3014. DOI: 10.1016/j.ijhydene.2017.12.066.
|
| [29] |
JING Y X, CUI J T, LIU B Z, et al. Pyrolysis and kinetic study of dimethyl methylphosphonate (DMMP) by synchrotron photoionization mass spectrometry [J]. Combustion and Flame, 2023, 255: 112919. DOI: 10.1016/j.combustflame.2023.112919.
|
| [30] |
SIKES T, MATHIEU O, KULATILAKA W D, et al. Laminar flame speeds of DEMP, DMMP, and TEP added to H2- and CH4-air mixtures [J]. Proceedings of the Combustion Institute, 2019, 37(3): 3775–3781. DOI: 10.1016/j.proci.2018.05.042.
|
| [31] |
DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152–166. DOI: 10.1016/j.jlp.2005.03.007.
|
| [32] |
李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究 [D]. 大连: 大连理工大学, 2019: 91–94. DOI: 10.26991/d.cnki.gdllu.2019.003558.LI Y C. Dynamic couplings of unstable hydrogen flame propagation and explosion pressure evolution [D]. Dalian: Dalian University of Technology, 2019: 91–94. DOI: 10.26991/d.cnki.gdllu.2019.003558.
|
| [33] |
夏远辰. 细水雾对氢燃料动力船舶机舱爆燃事故抑制机理研究 [D]. 大连: 大连海事大学, 2023: 52–54. DOI: 10.26989/d.cnki.gdlhu.2023.000803.XIA Y C. Research on inhibition mechanism of water fog on deflagration accident in engine room of hydrogen-powered ship [D]. Dalian: Dalian Maritime University, 2023: 52–54. DOI: 10.26989/d.cnki.gdlhu.2023.000803.
|