摘要:
本研究针对建筑围护系统抗风设计中的关键安全问题,旨在量化风致飞射物冲击作用下钢化玻璃破碎产生的次级碎片效应及其潜在风险。通过系统设计混合正交冲击试验,综合考察冲击类型、速度、角度、边界条件及玻璃厚度、尺寸等关键参数对破坏模式与碎片质量分布的影响规律。基于试验矩阵的极差分析与方差解析,量化揭示了各参数对玻璃破坏特征、冲击物速度衰减率及碎片质量分布特征的敏感性权重。依据量纲齐次原理与Π定理,构建了表征碎片质量分布规律的无量纲函数关系式框架。基于试验数据,通过正交距离回归迭代算法拟合确立半经验预测公式的参数取值,验证公式具有明确的物理意义与预测可靠性。试验表明:边界条件对玻璃破坏程度与碎片飞散起决定性作用,明框支撑工况碎片质量最低(最优),隐框支撑冲击物动能衰减率最大但碎片量次之,点支撑工况下玻璃均完全破碎(高危工况);冲击角度、玻璃尺寸与速度亦呈显著影响。最终建立的预测公式能精准表征钢化玻璃破碎特征,为建筑围护系统抗风设计提供关键理论依据。
Abstract:
This study addresses critical safety concerns in wind-resistant design of building envelope systems, aiming to quantify secondary fragmentation effects and potential risks from tempered glass breakage under wind-borne debris impact. Through systematically designed hybrid orthogonal impact tests, it comprehensively investigates the influence of key parameters—including impact type, velocity, angle, boundary conditions, glass thickness, and dimensions—on failure modes and fragment mass distribution. Range analysis and variance decomposition of the experimental matrix quantitatively reveal the sensitivity weights of each parameter on glass fracture characteristics, impactor velocity attenuation rate, and fragment mass distribution. A dimensionless functional framework characterizing fragment mass distribution was established using the principle of dimensional homogeneity and Buckingham's Π theorem. Parameter values for the semi-empirical predictive formula were determined via an orthogonal distance regression iterative algorithm, verifying the formula's physical significance and predictive reliability. Results demonstrate: boundary conditions dominantly control glass fracture extent and fragment dispersion (exposed framing support yielding minimal fragment mass - optimal solution); structural glazing support exhibits maximum kinetic energy attenuation yet moderate fragment quantities; point fixing induces complete fragmentation (high-risk scenario); impact angle, glass dimensions, and velocity also exert significant influences. The developed formula accurately characterizes tempered glass fracture patterns, with parameters for exposed framing and structural glazing supports both falling within the order of 10⁰, enabling their combination into a unified framed-type support system model, thereby providing crucial theoretical foundations for wind-resistant design of building envelopes.