Volume 42 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173
Citation: WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173

Blast injuries to human lung induced by blast shock waves

doi: 10.11883/bzycj-2022-0173
  • Received Date: 2022-04-22
  • Rev Recd Date: 2022-07-06
  • Available Online: 2022-08-17
  • Publish Date: 2022-12-08
  • In order to study the mechanism and the predictors of blast lung injuries, a finite element model including the human body and the explosion flow field was developed. The fluid-structure coupling algorithm of LS-DYNA was used to simulate the blast effect on the thorax. The developed model was validated using victims’ lung injury data in an explosion accident. A total of 39 simulation experiments were carried out. By changing the explosion equivalent and stand-off distance between the thorax and the explosive, the thorax was subjected to blast loads of different magnitudes, and the lung injuries ranged from no injury to extensive injuries. Base on the developed model, the pressure distribution in the explosion flow field, the dynamic response of the thorax and the stress distribution in the lung were investigated to clarify the mechanical mechanism of blast lung injuries. The thorax injuries and response of the human body model were analyzed, and the predictors of blast lung injuries were proposed. The results show that when subjected to the blast load, the anterior chest wall gains speed almost instantly and impacts the thoracic organs with a high velocity, causing the propagation of stress waves in the lung. Subsequently the anterior chest wall continuously compresses the thoracic organs and the ribs under inertia, which causes the thoracic deflection. The stress wave is the main cause of blast lung injuries, and the thoracic deflection is less likely to cause lung injuries. The damaged lung tissues are mainly in the area close to the anterior chest wall and heart. The peak sternum velocity and peak sternum acceleration have direct effects on the stress wave in the lung, and can be used as the predictors of blast lung injuries. The thoracic deflection and viscous criterion cannot reflect the damage to the lung caused by stress wave, and are not suitable for evaluating the blast lung injuries.
  • loading
  • [1]
    OWENS B D, KRAGH J F, WENKE J C, et al. Combat wounds in operation Iraqi freedom and operation enduring freedom [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(2): 295–299. DOI: 10.1097/TA.0b013e318163b875.
    [2]
    ARGYROS G J. Management of primary blast injury [J]. Toxicology, 1997, 121(1): 105–115. DOI: 10.1016/s0300-483x(97)03659-7.
    [3]
    蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展 [J]. 陆军军医大学学报, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.

    JIANG J X, ZENG L. Advance of protection and mechanism of lung blast injury [J]. Journal of Army Medical University, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.
    [4]
    黄建钊, 杨志焕, 王正国, 等. 狗冲击伤复合破片伤时肺的形态学改变 [J]. 第三军医大学学报, 1992, 14(2): 155–158. DOI: 10.3321/j.issn:1000-5404.1992.02.018.

    HUANG J Z, YANG Z H, WANG Z G, et al. Morphological changes of the lungs after blast, shell-fragment, and blast-fragment combined injuries in dogs [J]. Journal of Third Military Medical University, 1992, 14(2): 155–158. DOI: 10.3321/j.issn:1000-5404.1992.02.018.
    [5]
    BOUTILLIER J, MEZZO S, DECK C, et al. Chest response assessment of post-mortem swine under blast loadings [J]. Journal of Biomechanics, 2017, 65: 169–175. DOI: 10.1016/j.jbiomech.2017.10.012.
    [6]
    周杰, 陶钢, 王健. 爆炸冲击波对肺损伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.

    ZHOU J, TAO G, WANG J. Numerical simulation of lung injury induced by shock wave [J]. Explosion and Shock Waves, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.
    [7]
    周杰, 陶钢, 潘保青, 等. 爆炸冲击波对人体胸部创伤机理的有限元方法研究 [J]. 爆炸与冲击, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.

    ZHOU J, TAO G, PAN B Q, et al. Mechanism of blast trauma to human thorax: a finite element study [J]. Explosion and Shock Waves, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.
    [8]
    BOWEN I G, FLETCHER E R, RICHMOND D R. Estimate of man’s tolerance to the direct effects of air blast: DASA-2113 [R]. Washington, USA: Defense Atomic Support Agency, 1968.
    [9]
    AXELSSON H, YELVERTON J T. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1996, 40(3): 31S–37S. DOI: 10.1097/00005373-199603001-00006.
    [10]
    STUHMILLER J H, HO K H H, VORST M J V, et al. A model of blast overpressure injury to the lung [J]. Journal of Biomechanics, 1996, 29(2): 227–234. DOI: 10.1016/0021-9290(95)00039-9.
    [11]
    US Department of Justice. Public safety bomb suit standard: NIJ standard-0117.01 [S]. Washington, USA: National Institute of Justice, 2016.
    [12]
    VAWTER D L. A finite element model for macroscopic deformation of the lung [J]. Journal of Biomechanical Engineering, 1980, 102(1): 1–7. DOI: 10.1115/1.3138193.
    [13]
    王波, 何洋扬, 聂冰冰, 等. 底部爆炸条件下车内乘员损伤风险仿真评估 [J]. 清华大学学报(自然科学版), 2020, 60(11): 902–909. DOI: 10.16511/j.cnki.qhdxxb.2020.26.021.

    WANG B, HE Y Y, NIE B B, et al. Numerical investigation of vehicle occupant injury risks in underbody blast events [J]. Journal of Tsinghua University (Science and Technology), 2020, 60(11): 902–909. DOI: 10.16511/j.cnki.qhdxxb.2020.26.021.
    [14]
    HAMIT H F, BULLUCK M H, FRUMSON G, et al. Air blast injuries: report of a case [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1965, 5(1): 117–124. DOI: 10.1097/00005373-196501000-00012.
    [15]
    罗伟, 缑元斌. 用现行人体《重标》、《轻标》鉴定肺损伤存在问题及对策 [C]//中国法医学会全国第十五次法医临床学学术研讨会论文集. 大连: 中国法医学会, 2012: 38−39.
    [16]
    North Atlantic Treaty Organization. Procedures for evaluating the protection level of armoured vehicles for mine threat: AEP-55 VOL2—2011 [S]. Brussels, Belgium: Allied Engineering Publication, 2011.
    [17]
    曾衍钧. 离体肺组织内应力波传播速度的测定 [J]. 中国应用生理学杂志, 1989, 5(2): 237–240. DOI: 10.13459/j.cnki.cjap.1989.02.026.

    ZENG Y J. An in vitro measurement of stress wave velocities in the lung [J]. Chinese Journal of Applied Physiology, 1989, 5(2): 237–240. DOI: 10.13459/j.cnki.cjap.1989.02.026.
    [18]
    GOSS S A, JOHNSTON R L, DUNN F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues [J]. Journal of the Acoustical Society of America, 1978, 64(2): 423–457. DOI: 10.1121/1.382016.
    [19]
    GREER A D. Numerical modeling for the prediction of primary blast injury to the lung [D]. Waterloo, Canada: University of Waterloo, 2006: 125−126.
    [20]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车正面碰撞的乘员保护: GB 11551—2014 [S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. The protection of the occupants in the event of a frontal collision for motor vehicle: GB 11551—2014 [S]. Beijing, China: Standards Press of China, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (488) PDF downloads(178) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return