当期目录
2025, 45(5): 051001.
doi: 10.11883/bzycj-2024-0250
摘要:
为降低具有初始攻角的弹体在侵彻时产生的横向过载峰值,采用数值模拟方法,研究了一种带锯齿弹身的新型钻地弹以非零攻角姿态侵彻混凝土靶体时其特有的横向降载效应和机理。考虑初始攻角、质心系数等的影响,以常规光滑弹作为对比对象,分析了弹体运动规律、弹靶接触力、接触力矩、接触面积等。结果表明,在1°、2°和3°的小初始攻角范围内,锯齿弹较光滑弹分别降低横向过载峰值约30.6%、5.2%和11.3%,但相应的接触力矩的峰值和脉宽、偏转角度等均有所增大。研究结果揭示了锯齿弹的横向降载机理:锯齿弹身减小了弹靶的接触面积,横向接触力主要集中在弹身锯齿区靠近头部的前两个锯齿环槽的右锯齿上,使得锯齿弹身与靶的横向接触力减小,而非锯齿区(主要是弹体头部)与靶的横向接触力增大,二者的竞争可增强锯齿弹整体的横向降载效果。通过结构设计等手段抑制锯齿弹的弹道偏转后,可有效提升锯齿弹的横向降载效率。
为降低具有初始攻角的弹体在侵彻时产生的横向过载峰值,采用数值模拟方法,研究了一种带锯齿弹身的新型钻地弹以非零攻角姿态侵彻混凝土靶体时其特有的横向降载效应和机理。考虑初始攻角、质心系数等的影响,以常规光滑弹作为对比对象,分析了弹体运动规律、弹靶接触力、接触力矩、接触面积等。结果表明,在1°、2°和3°的小初始攻角范围内,锯齿弹较光滑弹分别降低横向过载峰值约30.6%、5.2%和11.3%,但相应的接触力矩的峰值和脉宽、偏转角度等均有所增大。研究结果揭示了锯齿弹的横向降载机理:锯齿弹身减小了弹靶的接触面积,横向接触力主要集中在弹身锯齿区靠近头部的前两个锯齿环槽的右锯齿上,使得锯齿弹身与靶的横向接触力减小,而非锯齿区(主要是弹体头部)与靶的横向接触力增大,二者的竞争可增强锯齿弹整体的横向降载效果。通过结构设计等手段抑制锯齿弹的弹道偏转后,可有效提升锯齿弹的横向降载效率。
2025, 45(5): 051101.
doi: 10.11883/bzycj-2024-0099
摘要:
人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象,以数值模拟结果作为机器学习代理模型的训练数据,将正向模拟与逆向设计有机结合起来,基于深度神经网络技术,构建了特征位置速度剖面、材料动态变形与工程因素之间端到端的代理模型,给出了代理模型的计算精确度,验证了代理模型从速度剖面反演工程因素的能力。结果表明:端到端代理模型具有较高的预测能力,其预测的速度剖面与工程因素估计的相对误差均小于1%,可用于高度非线性的爆炸与冲击动力学问题的快速设计、高精度预测和敏捷迭代。
人工智能/机器学习方法能够发现数据中隐藏的物理规律,构建状态参数与动态结果之间端到端的代理模型,可高效解决强耦合、非线性、多物理等复杂工程问题。在高度非线性的爆炸与冲击动力学领域,选择了一个经典的爆轰驱动问题作为研究对象,以数值模拟结果作为机器学习代理模型的训练数据,将正向模拟与逆向设计有机结合起来,基于深度神经网络技术,构建了特征位置速度剖面、材料动态变形与工程因素之间端到端的代理模型,给出了代理模型的计算精确度,验证了代理模型从速度剖面反演工程因素的能力。结果表明:端到端代理模型具有较高的预测能力,其预测的速度剖面与工程因素估计的相对误差均小于1%,可用于高度非线性的爆炸与冲击动力学问题的快速设计、高精度预测和敏捷迭代。
2025, 45(5): 052301.
doi: 10.11883/bzycj-2024-0121
摘要:
云雾的起爆状态决定爆轰威力,装置结构和比药量是影响云雾形态的主要因素。基于装置结构与云雾形状相似性的原理,对125 kg云雾的成雾性能进行试验研究,利用高速摄像进行全过程记录,获取了不同轴向强度装置结构和比药量对云雾特征的影响规律。结果表明:大体积燃料抛撒试验的成雾稳定性较好;轴向约束强的复合结构形成的云雾直径具有优势,相同比药量下,复合结构的云雾直径可以达到25.5 m,较强结构的云雾覆盖面积增加13%;比药量为0.8%时,复合结构燃料的成雾性能最佳,125 kg燃料的2次起爆延迟时间为240 ms,此时,云雾瞬时计算浓度为64 g/m3,当量比为0.54。
云雾的起爆状态决定爆轰威力,装置结构和比药量是影响云雾形态的主要因素。基于装置结构与云雾形状相似性的原理,对125 kg云雾的成雾性能进行试验研究,利用高速摄像进行全过程记录,获取了不同轴向强度装置结构和比药量对云雾特征的影响规律。结果表明:大体积燃料抛撒试验的成雾稳定性较好;轴向约束强的复合结构形成的云雾直径具有优势,相同比药量下,复合结构的云雾直径可以达到25.5 m,较强结构的云雾覆盖面积增加13%;比药量为0.8%时,复合结构燃料的成雾性能最佳,125 kg燃料的2次起爆延迟时间为240 ms,此时,云雾瞬时计算浓度为64 g/m3,当量比为0.54。
2025, 45(5): 053101.
doi: 10.11883/bzycj-2024-0272
摘要:
为研究冲击作用下混凝土的动态力学性质和裂纹处的动态温度,采用系统响应速率达到微秒级的自搭建高速红外测温系统,结合霍普金森压杆试验装置,通过静态标定试验拟合了钢-聚丙烯纤维混凝土(steel-polypropylene fiber reinforced concrete,SPFRC)的温度曲线。结果表明:混凝土试件的温度演化与力学性能存在明显的耦合效应,钢纤维体积掺量对动力学性能和温度影响很大,混凝土抗压强度随着钢纤维掺量的增加而增大;其中1.5%钢纤维体积掺量的试件表现出最佳的力学性能,当钢纤维体积掺量达到2.0%时,由于混凝土内部空隙增多,导致其力学性能略有下降。在冲击过程中,裂纹处的动态温度效应呈现“台阶状”特征,温度变化分为两个阶段:在裂纹初期,温度上升缓慢,而裂纹扩展后,摩擦和剪切效应加剧,导致裂纹处温度急剧上升。不同钢纤维体积掺量对温度变化的影响有限,其峰值温度和峰值应力呈现相似的规律,温度的主要变化由裂纹扩展和摩擦效应决定。
为研究冲击作用下混凝土的动态力学性质和裂纹处的动态温度,采用系统响应速率达到微秒级的自搭建高速红外测温系统,结合霍普金森压杆试验装置,通过静态标定试验拟合了钢-聚丙烯纤维混凝土(steel-polypropylene fiber reinforced concrete,SPFRC)的温度曲线。结果表明:混凝土试件的温度演化与力学性能存在明显的耦合效应,钢纤维体积掺量对动力学性能和温度影响很大,混凝土抗压强度随着钢纤维掺量的增加而增大;其中1.5%钢纤维体积掺量的试件表现出最佳的力学性能,当钢纤维体积掺量达到2.0%时,由于混凝土内部空隙增多,导致其力学性能略有下降。在冲击过程中,裂纹处的动态温度效应呈现“台阶状”特征,温度变化分为两个阶段:在裂纹初期,温度上升缓慢,而裂纹扩展后,摩擦和剪切效应加剧,导致裂纹处温度急剧上升。不同钢纤维体积掺量对温度变化的影响有限,其峰值温度和峰值应力呈现相似的规律,温度的主要变化由裂纹扩展和摩擦效应决定。
2025, 45(5): 053201.
doi: 10.11883/bzycj-2024-0239
摘要:
为探究钢纤维增强多孔混凝土材料的水下抗爆防护效果,采用光滑粒子流体动力学与有限元耦合方法建立了“水体-炸药-防护层-钢筋混凝土板”的三维精细化仿真模型,研究了不同纤维配比钢纤维增强多孔混凝土防护层(SAP10S5、SAP10S10、SAP10S15和SAP10S20)和不同炸药质量影响下被防护钢筋混凝土板的损伤演化过程、破坏模式及失效机理,并构建了钢筋混凝土板的损伤等级预测曲线。研究结果表明:水下接触爆炸荷载下,增设钢纤维增强多孔混凝土防护层能够有效降低被防护钢筋混凝土(reinforced concrete,RC)板的损伤程度,且其对RC板损伤程度的影响随防护层中钢纤维体积分数的增加呈先减小后增大的规律,其中SAP10S15配比防护层的抗爆防护效果最优;炸药量在一定范围内增大时,SAP10S15配比防护层依然能维持较高的耗能占比,有效降低RC板的损伤程度;当炸药量为0.25 kg时,相较于无防护方案,SAP10S15配比防护层加固下RC板的损伤指数衰减最明显,为42.5%,损伤等级由严重破坏降为中度破坏。构建的损伤等级预测曲线能够直观评估钢纤维体积分数和炸药量对RC板损伤等级的影响。
为探究钢纤维增强多孔混凝土材料的水下抗爆防护效果,采用光滑粒子流体动力学与有限元耦合方法建立了“水体-炸药-防护层-钢筋混凝土板”的三维精细化仿真模型,研究了不同纤维配比钢纤维增强多孔混凝土防护层(SAP10S5、SAP10S10、SAP10S15和SAP10S20)和不同炸药质量影响下被防护钢筋混凝土板的损伤演化过程、破坏模式及失效机理,并构建了钢筋混凝土板的损伤等级预测曲线。研究结果表明:水下接触爆炸荷载下,增设钢纤维增强多孔混凝土防护层能够有效降低被防护钢筋混凝土(reinforced concrete,RC)板的损伤程度,且其对RC板损伤程度的影响随防护层中钢纤维体积分数的增加呈先减小后增大的规律,其中SAP10S15配比防护层的抗爆防护效果最优;炸药量在一定范围内增大时,SAP10S15配比防护层依然能维持较高的耗能占比,有效降低RC板的损伤程度;当炸药量为0.25 kg时,相较于无防护方案,SAP10S15配比防护层加固下RC板的损伤指数衰减最明显,为42.5%,损伤等级由严重破坏降为中度破坏。构建的损伤等级预测曲线能够直观评估钢纤维体积分数和炸药量对RC板损伤等级的影响。
2025, 45(5): 053202.
doi: 10.11883/bzycj-2024-0214
摘要:
为了研究冲击荷载作用下含铜矿岩的破碎块度与能量耗散关系,借助分离式霍普金森压杆试验装置,分析不同冲击荷载下含铜凝灰岩的力学特性及能量传递规律,结合分形理论构建耗散能与矿岩破碎块度之间的关系;同时,基于有限离散元方法(finite discrete element method,FDEM)模拟矿岩的裂纹扩展行为。结果表明:随着入射能的增加,透射能、耗散能、反射能三者的能量分布规律基本保持一致,即透射能、耗散能、反射能依次减小;根据耗散能的不同,碎石块度分布也呈现出明显的差异性。当耗散能由19.52 J增加至105.72 J时,矿岩的平均块度从27.98 mm降低至16.94 mm,分形维数提升了26.43%,表明耗散能越高,矿岩的宏观破碎程度越剧烈,破碎块度的数目越多,碎块粒径越小,均匀性越好;随着冲击荷载的增大,裂纹起裂时间缩短,拉伸裂纹数量占总裂纹数量的比重提高。FDEM数值计算方法的应用可为深入解析岩石断裂破坏特性提供新的思路。
为了研究冲击荷载作用下含铜矿岩的破碎块度与能量耗散关系,借助分离式霍普金森压杆试验装置,分析不同冲击荷载下含铜凝灰岩的力学特性及能量传递规律,结合分形理论构建耗散能与矿岩破碎块度之间的关系;同时,基于有限离散元方法(finite discrete element method,FDEM)模拟矿岩的裂纹扩展行为。结果表明:随着入射能的增加,透射能、耗散能、反射能三者的能量分布规律基本保持一致,即透射能、耗散能、反射能依次减小;根据耗散能的不同,碎石块度分布也呈现出明显的差异性。当耗散能由19.52 J增加至105.72 J时,矿岩的平均块度从27.98 mm降低至16.94 mm,分形维数提升了26.43%,表明耗散能越高,矿岩的宏观破碎程度越剧烈,破碎块度的数目越多,碎块粒径越小,均匀性越好;随着冲击荷载的增大,裂纹起裂时间缩短,拉伸裂纹数量占总裂纹数量的比重提高。FDEM数值计算方法的应用可为深入解析岩石断裂破坏特性提供新的思路。
2025, 45(5): 053301.
doi: 10.11883/bzycj-2024-0244
摘要:
准确评估钻地武器战斗部侵彻和装药运动爆炸(侵彻动爆)的连续作用是对防护结构遮弹层进行可靠设计的前提。首先,基于装药体积填充和侵彻爆炸分步耦合技术,提出了三阶段弹体侵彻动爆一体化有限元分析方法,通过与已有的装药运动爆炸试验以及普通混凝土(normal strength concrete,NSC)和超高性能混凝土(ultra-high performance concrete,UHPC)靶体的侵彻静爆试验结果进行对比,充分验证了所提出方法对侵彻爆炸过程中爆炸波传播、靶体内应力峰值和开裂行为及其损伤演化描述的准确性。然后,基于105 mm口径缩比弹体打击NSC靶体工况,对比了所提出方法与传统侵彻静爆法预测靶体损伤破坏的差异,分析了侵彻爆炸应力场的叠加效应以及弹壳约束和断裂破片的影响,并基于弹载装药在不同时刻起爆下靶体的破坏特征,确定了战斗部最不利起爆时刻。最后,针对SDB、WDU-43/B和BLU-109/B等3种原型战斗部打击工况开展数值模拟,其侵彻动爆作用下的NSC和UHPC遮弹层的破坏深度分别为1.33、2.70、2.35 m和0.79、1.76、1.70 m,进一步给出了相应的遮弹层临界震塌厚度和临界贯穿厚度。结果表明,采用侵彻动爆一体化方法计算得到的破坏深度、临界震塌厚度和临界贯穿厚度较传统侵彻静爆法计算结果增大约5%~30%。
准确评估钻地武器战斗部侵彻和装药运动爆炸(侵彻动爆)的连续作用是对防护结构遮弹层进行可靠设计的前提。首先,基于装药体积填充和侵彻爆炸分步耦合技术,提出了三阶段弹体侵彻动爆一体化有限元分析方法,通过与已有的装药运动爆炸试验以及普通混凝土(normal strength concrete,NSC)和超高性能混凝土(ultra-high performance concrete,UHPC)靶体的侵彻静爆试验结果进行对比,充分验证了所提出方法对侵彻爆炸过程中爆炸波传播、靶体内应力峰值和开裂行为及其损伤演化描述的准确性。然后,基于105 mm口径缩比弹体打击NSC靶体工况,对比了所提出方法与传统侵彻静爆法预测靶体损伤破坏的差异,分析了侵彻爆炸应力场的叠加效应以及弹壳约束和断裂破片的影响,并基于弹载装药在不同时刻起爆下靶体的破坏特征,确定了战斗部最不利起爆时刻。最后,针对SDB、WDU-43/B和BLU-109/B等3种原型战斗部打击工况开展数值模拟,其侵彻动爆作用下的NSC和UHPC遮弹层的破坏深度分别为1.33、2.70、2.35 m和0.79、1.76、1.70 m,进一步给出了相应的遮弹层临界震塌厚度和临界贯穿厚度。结果表明,采用侵彻动爆一体化方法计算得到的破坏深度、临界震塌厚度和临界贯穿厚度较传统侵彻静爆法计算结果增大约5%~30%。
2025, 45(5): 053302.
doi: 10.11883/bzycj-2024-0177
摘要:
为研究近爆载荷作用下高强钢板的抗爆性能,首先利用ANSYS/LS-DYNA软件开展了高强钢材料的SHPB冲击试验模拟,标定了表征高强钢动态本构的Johnson-Cook模型参数;基于该参数开展了84组近爆条件下高强钢板的爆炸模拟,系统分析了爆炸冲击波与钢板的相互作用过程,阐明了钢板的宽度及厚度等几何参数对其变形特征与破坏模式的影响规律。此外,通过汇总分析数值模拟结果,进一步提供了近爆作用下高强钢板最大变形位移的预测模型。研究表明:Johnson-Cook模型能有效模拟高强钢在高应变率下的力学行为;在冲击波传播方面,高强钢板厚度的增加会削弱冲击波穿透钢板后的影响范围;针对不同几何参数的高强钢板,近距离爆炸荷载会造成花瓣形破口、小破口以及大变形3种毁伤模式,且钢板厚度是决定其破坏模式的重要因素;在大变形毁伤模式下,钢板厚度的增加或边长的减小会提高其抗爆能力,宽厚比与钢板抗爆性能呈正相关。
为研究近爆载荷作用下高强钢板的抗爆性能,首先利用ANSYS/LS-DYNA软件开展了高强钢材料的SHPB冲击试验模拟,标定了表征高强钢动态本构的Johnson-Cook模型参数;基于该参数开展了84组近爆条件下高强钢板的爆炸模拟,系统分析了爆炸冲击波与钢板的相互作用过程,阐明了钢板的宽度及厚度等几何参数对其变形特征与破坏模式的影响规律。此外,通过汇总分析数值模拟结果,进一步提供了近爆作用下高强钢板最大变形位移的预测模型。研究表明:Johnson-Cook模型能有效模拟高强钢在高应变率下的力学行为;在冲击波传播方面,高强钢板厚度的增加会削弱冲击波穿透钢板后的影响范围;针对不同几何参数的高强钢板,近距离爆炸荷载会造成花瓣形破口、小破口以及大变形3种毁伤模式,且钢板厚度是决定其破坏模式的重要因素;在大变形毁伤模式下,钢板厚度的增加或边长的减小会提高其抗爆能力,宽厚比与钢板抗爆性能呈正相关。
2025, 45(5): 053401.
doi: 10.11883/bzycj-2024-0229
摘要:
为探究破碎浮冰覆盖密度对结构物入水空泡演化的影响,利用高速摄影技术开展了不同破碎浮冰覆盖密度下结构物倾斜入水实验。通过对比不同碎冰覆盖密度工况下的结构物倾斜入水过程,获得了碎冰覆盖密度对结构物倾斜入水空泡演化特性的影响规律。结果表明:与无冰环境相比,当空泡扩张时,破碎浮冰通过阻碍液面流体向外扩张,致使空泡直径减小;而空泡闭合时,碎冰会阻碍液面流体向内收缩,延长空泡扩张时间,此时空泡内空气总量增加,空泡内外压差减小,最终导致空泡闭合延迟。碎冰覆盖密度较小的工况在空泡溃灭时会出现指向空泡内部的射流。随着碎冰覆盖密度的逐渐增大,其对液面流体向内收缩的阻碍作用逐渐增强,进一步延迟了空泡的闭合时间,空泡的长度和最大直径也相应增大。此外,碎冰覆盖密度较大的工况下,流体的无规则冲击使得空泡壁出现褶皱。随着结构物入水深度的增加,空泡在环境压力作用下会出现深颈缩现象;随着碎冰覆盖密度的逐渐增大,结构物的水下运动速度相较于无冰环境呈现更快的衰减趋势。
为探究破碎浮冰覆盖密度对结构物入水空泡演化的影响,利用高速摄影技术开展了不同破碎浮冰覆盖密度下结构物倾斜入水实验。通过对比不同碎冰覆盖密度工况下的结构物倾斜入水过程,获得了碎冰覆盖密度对结构物倾斜入水空泡演化特性的影响规律。结果表明:与无冰环境相比,当空泡扩张时,破碎浮冰通过阻碍液面流体向外扩张,致使空泡直径减小;而空泡闭合时,碎冰会阻碍液面流体向内收缩,延长空泡扩张时间,此时空泡内空气总量增加,空泡内外压差减小,最终导致空泡闭合延迟。碎冰覆盖密度较小的工况在空泡溃灭时会出现指向空泡内部的射流。随着碎冰覆盖密度的逐渐增大,其对液面流体向内收缩的阻碍作用逐渐增强,进一步延迟了空泡的闭合时间,空泡的长度和最大直径也相应增大。此外,碎冰覆盖密度较大的工况下,流体的无规则冲击使得空泡壁出现褶皱。随着结构物入水深度的增加,空泡在环境压力作用下会出现深颈缩现象;随着碎冰覆盖密度的逐渐增大,结构物的水下运动速度相较于无冰环境呈现更快的衰减趋势。
2025, 45(5): 054101.
doi: 10.11883/bzycj-2024-0181
摘要:
为探究超高速撞击条件下混凝土靶内的应力波特性,建立了基于PVDF(polyvinylidene difluoride)压电应力计的应力波测试系统,研究了PVDF压电应力计的标定方法,测量了克级柱形93W钨合金弹体超高速撞击条件下混凝土靶体内的应力波形,并利用数值模拟方法分析了应力波的产生和传播机制。结果表明:PVDF压电应力计的动态灵敏度系数为(17.5±0.5) pC/N;信噪比高的超高速撞击条件下实验测量的混凝土靶内的应力波形与数值模拟结果吻合较好,模拟和实验获得的应力波峰值的最大偏差不超过20%。
为探究超高速撞击条件下混凝土靶内的应力波特性,建立了基于PVDF(polyvinylidene difluoride)压电应力计的应力波测试系统,研究了PVDF压电应力计的标定方法,测量了克级柱形93W钨合金弹体超高速撞击条件下混凝土靶体内的应力波形,并利用数值模拟方法分析了应力波的产生和传播机制。结果表明:PVDF压电应力计的动态灵敏度系数为(17.5±0.5) pC/N;信噪比高的超高速撞击条件下实验测量的混凝土靶内的应力波形与数值模拟结果吻合较好,模拟和实验获得的应力波峰值的最大偏差不超过20%。
2025, 45(5): 055201.
doi: 10.11883/bzycj-2024-0112
摘要:
为研究爆破漏斗的形成过程和机理,并探究该过程中爆炸应力波与爆生气体的破岩作用,基于双指数型爆炸载荷函数和爆生气体压力状态方程,构建了考虑药包爆破动-静时序作用的爆炸载荷加载模型,结合爆炸应力波和爆生气体的加载特点,建立了爆破漏斗离散元数值模型,并开展了被爆岩体的裂隙发育及破碎抛掷过程的模拟研究,对比了加载和不加载爆生气体的模拟结果,探讨了爆破漏斗形成过程中爆炸应力波和爆生气体的不同作用。结果表明:考虑药包爆破动-静时序作用的爆炸载荷加载模型模拟的爆破漏斗尺寸与现场试验结果基本吻合,可以较好地反映爆破岩体区域内裂隙的形成与演化规律及破碎岩体的抛掷效果。爆炸应力波加载率较大是引起爆源近区环状微裂隙的主要原因,同时,它会在自由面处发生反射拉伸,形成“片落”破坏;而爆生气体则是爆源远区径向长裂隙形成的主要原因,此外,它会推动破碎岩体以较大速度向外抛掷。爆生气体不仅具有准静态作用,也存在一定的动态作用,延长了爆破振动的作用时间,加强了爆破振动的速度峰值。漏斗形成过程中的裂隙发育可大致分为爆炸应力波加载致裂、爆生气体加载致裂以及变形能释放致裂3个阶段。
为研究爆破漏斗的形成过程和机理,并探究该过程中爆炸应力波与爆生气体的破岩作用,基于双指数型爆炸载荷函数和爆生气体压力状态方程,构建了考虑药包爆破动-静时序作用的爆炸载荷加载模型,结合爆炸应力波和爆生气体的加载特点,建立了爆破漏斗离散元数值模型,并开展了被爆岩体的裂隙发育及破碎抛掷过程的模拟研究,对比了加载和不加载爆生气体的模拟结果,探讨了爆破漏斗形成过程中爆炸应力波和爆生气体的不同作用。结果表明:考虑药包爆破动-静时序作用的爆炸载荷加载模型模拟的爆破漏斗尺寸与现场试验结果基本吻合,可以较好地反映爆破岩体区域内裂隙的形成与演化规律及破碎岩体的抛掷效果。爆炸应力波加载率较大是引起爆源近区环状微裂隙的主要原因,同时,它会在自由面处发生反射拉伸,形成“片落”破坏;而爆生气体则是爆源远区径向长裂隙形成的主要原因,此外,它会推动破碎岩体以较大速度向外抛掷。爆生气体不仅具有准静态作用,也存在一定的动态作用,延长了爆破振动的作用时间,加强了爆破振动的速度峰值。漏斗形成过程中的裂隙发育可大致分为爆炸应力波加载致裂、爆生气体加载致裂以及变形能释放致裂3个阶段。
2025, 45(5): 055202.
doi: 10.11883/bzycj-2024-0159
摘要:
为探究多次落石冲击下棚洞结构的动力响应特征,建立并验证了基于ANSYS/LS-DYNA有限元软件的落石冲击棚洞FEM-SPH耦合数值模型,并结合LS-DYNA完全重启动技术,研究了落石冲击速度、质量、冲击角度、形状等4个因素对多次落石冲击棚洞结构动力响应的影响。结果表明:冲击力、缓冲层顶部冲击位移、棚顶位移、棚洞塑性应变均与落石质量、速度、冲击方向与棚洞平面的夹角呈正相关;长方体落石冲击产生的冲击力、棚顶位移和塑性应变均大于球体落石,球体落石产生的冲击位移大于长方体;对于长方体落石,冲击位移、棚顶位移、塑性应变与接触面积呈负相关;随着落石冲击次数的增加,峰值冲击力通常会先增大而后趋于稳定。
为探究多次落石冲击下棚洞结构的动力响应特征,建立并验证了基于ANSYS/LS-DYNA有限元软件的落石冲击棚洞FEM-SPH耦合数值模型,并结合LS-DYNA完全重启动技术,研究了落石冲击速度、质量、冲击角度、形状等4个因素对多次落石冲击棚洞结构动力响应的影响。结果表明:冲击力、缓冲层顶部冲击位移、棚顶位移、棚洞塑性应变均与落石质量、速度、冲击方向与棚洞平面的夹角呈正相关;长方体落石冲击产生的冲击力、棚顶位移和塑性应变均大于球体落石,球体落石产生的冲击位移大于长方体;对于长方体落石,冲击位移、棚顶位移、塑性应变与接触面积呈负相关;随着落石冲击次数的增加,峰值冲击力通常会先增大而后趋于稳定。
2025, 45(5): 055401.
doi: 10.11883/bzycj-2024-0093
摘要:
为探究常用增材制造用铝及铝硅合金粉尘的爆炸特性,采用20 L球形爆炸装置,对Al、Al-12Si和Al-20Si等3种样品进行密闭空间内的爆炸实验,测试其在不同影响因素下爆炸参数的变化,采用热重分析-差示扫描量热法分析样品的热氧化特性。结果表明:随着合金中硅含量的增加,爆炸下限升高,最大爆炸压力及爆炸峰值温度下降,氧化过程的放热量减少,氧化速率减慢;Al、Al-12Si和Al-20Si达到最大爆炸压力的质量浓度分别为300、750和900 g/m3;当点火能量增加时,铝硅合金的最大爆炸压力上升速率的增幅低于铝粉;环境温度变化对样品爆炸下限的影响小于粒径变化带来的影响。根据爆炸产物的X射线衍射测试分析铝硅合金的爆炸机理,发现爆炸是由颗粒受热汽化形成的气态铝和气态硅组成的可燃气体与氧气混合燃烧所致。
为探究常用增材制造用铝及铝硅合金粉尘的爆炸特性,采用20 L球形爆炸装置,对Al、Al-12Si和Al-20Si等3种样品进行密闭空间内的爆炸实验,测试其在不同影响因素下爆炸参数的变化,采用热重分析-差示扫描量热法分析样品的热氧化特性。结果表明:随着合金中硅含量的增加,爆炸下限升高,最大爆炸压力及爆炸峰值温度下降,氧化过程的放热量减少,氧化速率减慢;Al、Al-12Si和Al-20Si达到最大爆炸压力的质量浓度分别为300、750和900 g/m3;当点火能量增加时,铝硅合金的最大爆炸压力上升速率的增幅低于铝粉;环境温度变化对样品爆炸下限的影响小于粒径变化带来的影响。根据爆炸产物的X射线衍射测试分析铝硅合金的爆炸机理,发现爆炸是由颗粒受热汽化形成的气态铝和气态硅组成的可燃气体与氧气混合燃烧所致。